Aerial Triangulation Report

PALM BEACH COUNTY AERIAL PHOTOGRAPHY AND MAPPING OF SEAGRASS / MANGROVES / OYSTER / SPARTINA IN PALM BEACH COUNTY AND LAKE WORTH LAGOON

Task Order 0688-01A

Prepared by:

Keith Patterson, PSM Avineon, Inc. 15500 Lightwave Drive, Suite 200 Clearwater, Fl 33760

Table of Contents

Project Name
Business Entity Name
Professional Surveyor and Mapper Name
Type of Survey
Date of Survey
Revision Dates
Datum and Control Points
Accuracy Statement
Intended Display Scale
Data Sources and Data Lineage
Measurement Methods
Feature List
Responsibility for Mapped Features
Map Accuracy
Limitations of Information Presented
Validity7
APPENDIX A - HORIZONTAL ACCURACY STATISTICS

Aerial Triangulation Report

Project Name

2007 Aerial Photography and Mapping of Seagrass / Mangroves / Oyster / Spartina in Palm Beach County and Lake Worth Lagoon.

Business Entity Name

Avineon, Inc. 15500 Lightwave Drive, Suite 200 Clearwater, Fl 33760

License Number: LB 7228

Professional Surveyor and Mapper Name

Keith Patterson, PSM Avineon, Inc. 15500 Lightwave Drive, Suite 200 Clearwater, Fl 33760

License Number: LS 5431

Type of Survey

This report addresses the aerial triangulation of scanned aerial photography. Aerial triangulation is a method of ground control extension or densification performed mathematically and in conjunction with a limited number of ground control points. This is a control survey designed for the rectification of vertical aerial photography.

Date of Survey

Aerotriangulation was completed on November 25, 2007.

Revision Dates

No revisions have been implemented.

Datum and Control Points

The following datum was used:

Horizontal: State Plane NAD 1983 HARN, Florida East Zone #0901, Units feet.

Vertical: NGVD 29, NAVD 88

A listing of the control points used for aerial triangulation is contained within Appendix A.

Accuracy Statement

This project specified that the aerial triangulation solution allow for mapping which meets a horizontal accuracy as defined by the USGS National Map Accuracy Standards (NMAS) for 1:24,000 scale map products. The NMAS specification is re-printed below.

Horizontal Accuracy. For maps on publication scales larger than 1:20,000, not more than 10 percent of the points tested shall be in error by more than 1/30 inch, measured on the publication scale; for maps on publication scales of 1:20,000 or smaller, 1/50 inch. These limits of accuracy shall apply in all cases to positions of well-defined points only. Well-defined points are those that are easily visible or recoverable on the ground, such as the following: monuments or markers, such as bench marks, property boundary monuments; intersections of roads, railroads, etc.; corners of large buildings or structures (or center points of small buildings); etc. In general what is well defined will be determined by what is plottable on the scale of the map within 1/100 inch. Thus while the intersection of two roads or property lines meeting at right angles would come within a sensible interpretation, identification of the intersection of such lines meeting at an acute angle would obviously not be practicable within 1/100 inch. Similarly, features not identifiable upon the ground within close limits are not to be considered as test points within the limits quoted, even though their positions may be scaled closely upon the map. In this class would come timber lines, soil boundaries, etc.

No vertical accuracy was specified for the project.

Intended Display Scale

1:24,000

Data Sources and Data Lineage

The following data sources were used to accomplish aerial triangulation:

Aerial Photography

A total of 146 aerial photographs were used for aerial triangulation. Three sets of 9" x 9" film-based aerial photographs were used to accomplish aerotriangulation as described below.

Lake Worth Lagoon Set – Natural color aerial photography acquired on June 20, 2007, June 22, 2007, July 21, 2007 and August 4, 2007 at scale of 1:10,000. 86 exposures were contained within this set.

Loxahatchee River Estuary – Natural color aerial photography acquired on July 1, 2007 at scale of 1:4,800. 52 exposures were contained within this set.

Indian River Lagoon acquired on August 8, 2007 at scale of 1:10,000. 8 exposures were contained within this set.

The above aerial photographs were captured using a Wild RC30 photogrammetric camera, serial number 5334, with a Wild Universal Aviogon /4-S lens with serial number 13374. This camera has a calibrated focal length of 153.799 and the calibration date is January 5, 2007.

Ground Control Coordinates

A combination of 1) photo-identifiable ground control points recovered from previous aerial mapping projects; and 2) photo-identifiable ground control coordinates extracted from existing digital orthophotography were used as ground control for aerial triangulation.

Palm Beach County specified that photo-identifiable ground control coordinates be reused from prior aerial mapping projects completed within Palm Beach County. Using ground control point documentation, Avineon transferred the existing ground control points to the 2007 photography used for this project. The majority of the pre-existing ground control points were recovered and used. Additional photo-identifiable points were selected from USGS digital orthophoto quarter quads (DOQQs).

Measurement Methods

Aerial triangulation was performed for this project to produce rectified aerial photography suitable for stereo-compilation within a soft-copy photogrammetric stereoplotter.

The project is divided into three aerial triangulation blocks which equate to the three sets of aerial photography provided for the project. Each block contained a suitable distribution of control points.

The Fully Analytical Aerial Triangulation (FAAT) solution was computed using Intergraph Corporation's Z/I Imaging ImageStation Automatic Triangulation (ISAT) software. ISAT software possesses automatic error detection and self-calibration.

Ground control points were measured using ISAT software. Additional pass points and tie points were visually (i.e. manually) selected from the project's aerial photography to densify the control. This measurement provided the image coordinate for each point related to the fiducials of the aerial camera. The aerial triangulation process takes into account control point information, the camera calibration information supplied with the aerial photography, camera lens distortion, and the image coordinate of each point measured within the software.

For quality control purposes, photo-identifiable check point coordinates were used to compare the positions of static features on the project's adjusted aerial photography with identical points appearing on Palm Beach County's one foot resolution digital orthophotography.

Feature List

This report addresses the results of aerial triangulation. No features have been mapped from the aerial photographs.

Responsibility for Mapped Features

The signing PSM is responsible for the accuracy of the aerial triangulation accomplished for this project.

Map Accuracy

The aerial triangulation solution meets the horizontal map accuracy as defined within the USGS National Map Accuracy Standards (NMAS) for 1:24,000 scale map products.

Appendix A contains tables showing the comparisons of 1) ground control points with the same points adjusted after aerial triangulation; and 2) photo-identifiable check points with the same points calculated within the aerial triangulation solution. Check points are known coordinates that are compared to the aerial triangulation result. The coordinate values for these check points were derived from Palm Beach County's county-wide imagery.

Limitations of Information Presented

The information presented herein is limited to the aerial triangulation methods and subsequent accuracy results obtained from the aerial triangulation process.

Validity

This report is not valid without the original signature and original raised seal of a Florida Licensed Professional Surveyor and Mapper (PSM).

This report is neither full nor complete without the attached map which consists of a digital aerial triangulation file that will be used for image rectification and stereo compilation.

Additions or deletions to survey maps and reports by other than the signing PSM are prohibited without the written consent of the signing PSM.

PSM in Responsible Charge:

Val A

Keith Patterson, LS 5431 Avineon, Incorporated LB 7228

4/30/2008

Date

SEAL ON ORIGINAL

APPENDIX A - HORIZONTAL ACCURACY STATISTICS

г

CONTROL POINT COORDINATES - AEROTRIANGULATION COORDINATES

THE TABLE BELOW SHOWS THE CONTROL POINTS USED FOR AERIAL TRANGULATION

THE TABLE COMPARES THE KNOWN CONTROL POINT COORDINATES (GROUND) WITH THE ADJUSTED COORDINATES WITHIN THE AERIAL TRIANGULATION SOLUTION (AT)

Point	x	x		(diff in x)	У	у		(diff in	(diff in x)² +
Number	AT	GROUND	diff in x		AT	GROUND	diff in y	(uni in y) ²	(diff in y) ²
1	955123.83	955123.43	0.396	0.157	724956.695	724955.94	0.755	0.57	0.727
2	958869.73	958869.93	-0.2	0.04	723821.982	723822.39	-0.408	0.166	0.206
5	962215.87	962215.46	0.407	0.166	757950.422	757950.98	-0.558	0.311	0.477
6	961392.63	961393.19	-0.559	0.312	769150.062	769149.94	0.122	0.015	0.327
8	962700.38	962700.29	0.09	0.008	793435.244	793435.38	-0.136	0.018	0.027
9	964865.48	964865.69	-0.211	0.045	796141.164	796141.18	-0.016	0	0.045
10	966769.78	966770.43	-0.647	0.419	795303.26	795302.84	0.42	0.176	0.595
11	958293.52	958292.9	0.623	0.388	919107.703	919107.51	0.193	0.037	0.425
12	961058.51	961058.6	-0.086	0.007	919631.157	919631.15	0.007	0	0.007
13	959151.6	959152.13	-0.53	0.281	932756.987	932756.82	0.167	0.028	0.309
14	951749.4	951749.56	-0.164	0.027	941661.205	941662.06	-0.855	0.731	0.758
15	950080.12	950080.41	-0.293	0.086	950463.465	950464.51	-1.045	1.092	1.178
16	954349.97	954350.22	-0.252	0.064	952244.559	952243.27	1.289	1.662	1.725
18	954777.91	954779.66	-1.751	3.066	950452.465	950451.83	0.635	0.403	3.469
22	949126.27	949125.35	0.918	0.843	949873.339	949872.66	0.679	0.461	1.304
23	953737.57	953735.73	1.839	3.382	950125.557	950126.4	-0.843	0.711	4.093
27	961594.48	961593.96	0.524	0.275	906979.479	906980.02	-0.541	0.293	0.567
28	963846.64	963847.51	-0.874	0.764	907789.288	907788.9	0.388	0.151	0.914
29	970053.42	970053.42	0.003	0	818617.873	818617.73	0.143	0.02	0.02
30	966599.25	966599.2	0.054	0.003	852892.389	852892.06	0.329	0.108	0.111
31	968239.33	968238.98	0.348	0.121	863592.307	863592.98	-0.673	0.453	0.574
32	969760.66	969760.54	0.117	0.014	828832.305	828832.42	-0.115	0.013	0.027
33	966706.51	966706.649	-0.141	0.02	891285.862	891286.447	-0.585	0.342	0.362
34	971425.59	971424.745	0.845	0.714	891564.268	891565.355	-1.087	1.182	1.896
35	969916.92	969917.775	-0.851	0.724	888720.399	888718.687	1.712	2.931	3.655
36	965328.07	965328.113	-0.044	0.002	877083.875	877082.848	1.027	1.055	1.057
37	971018.88	971019.101	-0.22	0.048	876115.543	876116.437	-0.894	0.799	0.848
38	970413.44	970413.374	0.068	0.005	841092.789	841093.401	-0.612	0.375	0.379
39	964752.94	964752.361	0.578	0.334	809064.224	809064.691	-0.467	0.218	0.552
40	965753.29	965753.427	-0.133	0.018	840686.717	840685.873	0.844	0.712	0.73

41	963681.41	963680.901	0.512	0.262	780819.967	780820.173	-0.206	0.042	0.305
42	958194.24	958194.074	0.164	0.027	734556.55	734557.483	-0.933	0.87	0.897
43	957047.64	957047.635	0.009	0	746148.3	746147.855	0.445	0.198	0.198
44	957192.1	957192.563	-0.466	0.217	746513.345	746512.716	0.629	0.396	0.613
45	969386.26	969386.331	-0.075	0.006	809779.402	809779.212	0.19	0.036	0.042
9001	942052.91	942056.308	-3.397	11.54	952677.587	952674.777	2.81	7.896	19.436
9003	944802.02	944802.137	-0.117	0.014	951564.221	951564.111	0.11	0.012	0.026
9004	950308.98	950307.976	0.999	0.998	952810.507	952812.511	-2.004	4.016	5.014
9006	954558.65	954559.401	-0.747	0.558	951712.805	951712.645	0.16	0.026	0.584
9008	942502.58	942505.266	-2.685	7.209	952959.91	952961.124	-1.214	1.474	8.683
9009	947996.09	947995.261	0.825	0.681	954786.19	954786.148	0.042	0.002	0.682
9011	942312.85	942313.187	-0.333	0.111	948524.298	948523.829	0.469	0.22	0.331
20071	939179.86	939179.852	0.01	0	955436.152	955436.812	-0.66	0.436	0.436
90015	938497.66	938495.804	1.859	3.456	959115.599	959115.749	-0.15	0.022	3.478
90016	939625.6	939627.507	-1.908	3.64	957721.254	957721.646	-0.392	0.154	3.794
90017	943476.92	943477.788	-0.87	0.757	958264.256	958264.809	-0.553	0.306	1.063
90018	946135.65	946132.902	2.744	7.53	958577.735	958577.367	0.368	0.135	7.665
90020	950844.86	950845.435	-0.572	0.327	955839.717	955838.9	0.817	0.667	0.995
90021	947390.99	947391.68	-0.691	0.477	947812.727	947812.658	0.069	0.005	0.482
90022	946566.27	946565.319	0.954	0.91	950149.364	950147.528	1.836	3.371	4.281
90023	951846.18	951846.975	-0.8	0.64	948449.681	948449.056	0.625	0.391	1.031
90024	955389.35	955388.724	0.621	0.386	949552.505	949551.181	1.324	1.753	2.139
90025	957239.19	957238.852	0.341	0.116	952651.929	952652.625	-0.696	0.484	0.601
920075	957563.91	957563.541	0.371	0.138	949376.793	949376.942	-0.149	0.022	0.16
400003	953778.893	953783.948	5.055	25.553025	952940.671	952939.716	-0.955	0.91	26.47
400004	956862.308	956861.619	-0.689	0.474721	954187.419	954186.976	-0.443	0.20	0.67
500113	954168.604	954167.498	-1.106	1.223236	956715.846	956716.076	0.23	0.05	1.28
500114	957159.84	957159.797	-0.043	0.001849	953465.179	953465.101	-0.078	0.01	0.01
								sum	118.72
								average	2.05

average	2.05
RMSE	1.43
NSSDA	2.48
NMAS	2.17

AEROTRIANGULATION COORDINATES - CHECK POINT COORDINATES

THE TABLE BELOW SHOWS THE HECK POINTS USED FOR QUALITY ASSURANCE

THE TABLE COMPARES THE ADJUSTED CONTROL POINT COORDINATES (AT) WITH INDEPENDENT CHECK POINTS (CHECK) WHICH WERE DERIVED FROM ANOTHER SOURCE

Point	x	x		(diff in x)	У	У		(diff in	(diff in x)² +
Number	AT	CHECK	diff in x		AT	CHECK	diff in y	$(x)^2$	(diff in y) ²
Check_A	953410.73	953412.677	-1.951	3.806	951558.296	951559.572	-1.276	1.628	5.435
Check_B	953483.92	953486.076	-2.16	4.666	945348.767	945349.924	-1.157	1.339	6.004
Check_C	958249.31	958251.598	-2.289	5.24	925673.204	925675.868	-2.664	7.097	12.336
Check_D	963364.85	963366.927	-2.079	4.322	913890.227	913892.425	-2.198	4.831	9.153
Check_E	970341.59	970342.472	-0.881	0.776	902777.911	902777.919	-0.008	0	0.776
Check_F	968400.66	968400.886	-0.229	0.052	893925.183	893928.036	-2.853	8.14	8.192
Check_G	968807.38	968808.417	-1.035	1.071	883914.709	883917.697	-2.988	8.928	9.999
Check_H	966434.76	966434.097	0.662	0.438	872975.064	872978.989	-3.925	15.406	15.844
Check_I	967081.31	967081.244	0.061	0.004	868157.98	868160.255	-2.275	5.176	5.179
Check_J	966312.63	966313.321	-0.695	0.483	857546.896	857549.67	-2.774	7.695	8.178
Check_K	967189.51	967189.275	0.238	0.057	850959.414	850961.374	-1.96	3.842	3.898
Check_L	967127.81	967129.502	-1.691	2.859	843609.574	843612.717	-3.143	9.878	12.738
Check_M	967070.05	967071.521	-1.473	2.17	838046.339	838048.032	-1.693	2.866	5.036
Check_N	967586.63	967588.4	-1.771	3.136	822273.316	822273.139	0.177	0.031	3.168
Check_C	968266.18	968268.802	-2.62	6.864	812165.274	812166.261	-0.987	0.974	7.839
Check_P	967595.87	967597.315	-1.447	2.094	803390.622	803392.344	-1.722	2.965	5.059
Check_Q	964979.12	964982.771	-3.649	13.315	792611.919	792614.644	-2.725	7.426	20.741
Check_R	962984.35	962986.412	-2.064	4.26	777931.283	777931.888	-0.605	0.366	4.626
Check_T	961269.14	961271.884	-2.748	7.552	753185.521	753189.044	-3.523	12.412	19.963
Check_U	958981.12	958981.203	-0.083	0.007	743153.471	743156.447	-2.976	8.857	8.863
Check_V	958784.74	958785.788	-1.051	1.105	732589.28	732592.9	-3.62	13.104	14.209
Check_W	957100.55	957100.619	-0.071	0.005	725256.581	725260.246	-3.665	13.432	13.437
Check	954337.3	954336.747	-0.554	0.306916	952787.263	952790.85	3.587	12.86657	13.173485
		•			•			sum	213.85
								average	9.30

RMSE

NSSDA

NMAS

3.05

5.28

4.63