Seafloor Texture Analysis of Saipan Anchorage Bathymetry using Local Fourier Histogram (LFH) Texture Features: LFH class maps from Saipan bathymetry using unsupervised classification and supervised classification based upon seafloor video image data.

Draft Final Report

Prepared by:
G. R. Cutter Jr.

October 2004

Submitted to:
NMFS Pacific Islands Fisheries Center, F/PIC Natl. Marine Fisheries Service, 2570 Dole Street, Honolulu, HI 96822-2369

Order number JJ133F04SE0124

Requisition/Ref. No. NFFR7400-4-00124

Table of Contents

Abstract 4
Introduction 6
Datasets and Methods 10
Bathymetric data grids from Saipan 10
Seafloor video analysis data 10
LFH analysis and classification 12
LFH texture feature construction 13
Unsupervised Classification 14
Supervised Classification 15
Map products 16
Results 17
Bathymetric grid 17
Bathymetric map with 5 m grid cell, color coded depths 17
Bathymetric map with 5 m grid cell, shaded surface 18
LFM maps from three grid cell sizes 19
5 m grid cell LFM maps 19
10 m grid cell LFM maps $\underline{20}$
20 m grid cell LFM maps 21
Pseudospectral (LFMRGB) maps from three grid cell sizes $\underline{22}$
5 m grid cell LFMRGB map $\underline{23}$
10 m grid cell LFMRGB map $\underline{24}$
20 m grid cell LFMRGB map $\underline{25}$
LFH maps from unsupervised classification $\underline{26}$
5 m grid cell LFH (per block) map 27
10 m grid cell LFH (per block) map $\underline{28}$
20 m grid cell LFH (per block) map $\underline{29}$
Supervised classification results 30
Supervised LFH classification from random training samples 30
Supervised LFH classification from video data training samples 35
Supervised LFH classification from video, random, and arbitrary training
samples 42
Discussion 45
LFH and spatial frequencies 45
Morphologies 46
Unsupervised classification 47
Supervised classification 48
Supervised classification according to random training point classes 48
Supervised classification according to video data classes 49
Supervised classification according to random, arbitrary, and video
prototypes 52
Classes and interpretations 53
References 57
Appendix 59

Abstract

For some parts of the seafloor, morphological characteristics can be used to distinguish benthic habitats. The purpose of this work was to segment and classify the seafloor according to apparent and identified benthic habitats using morphological textures in multibeam echosounder bathymetric data from a study area off the island of Saipan. Unsupervised classifications provided reasonable segmentation and apparently accurate representation of the spatial distributions of most prominent morphological features. However, detailed interpretation of those results were difficult, and apparent misclassifications required arbitrary adjustment of some aspect of the classification procedure, confounding attempts of optimization. Three supervised classifications were done by assembling training sample texture feature prototypes from (1) randomly selected set of points, (2) video image positions, and (3) video, random, and arbitrary points combined. The random classification using many (100) points was very good at separating out many feature types, however with so many samples, not all could be assigned a class type or name. Using fewer random samples (10) allowed interpretation of seafloor class or type to some extent from the bathymetry, however not all apparent habitats were represented when few training samples were used. Classification using LFH prototypes generated at positions where video ground-truth data existed allowed direct use of ground-truth data for classification of all bathymetric grid cells. However, as with the random samples, not all habitat types were represented. Using the set including all LFH prototypes from random, video groundtruth, and arbitrary samples allowed classification according to all of the prototype classes, resulting in a classified map considered to represent a more reliable hypothetical habitat map for most of the study area. Additional ground-truth data and interpretation would be beneficial for

testing the validity and accuracy of the hypothetical habitat maps from each of the classification strategies.

Introduction

The benthic habitat mapping mission for the Saipan anchorage study area, Northern Mariana Islands included texture analysis of bathymetry grid data in order to segment and classify the seafloor according to morphology. Texture analysis has been applied in several studies recently to acoustic backscatter data from multibeam echosounders or sidescan sonars (Huvenne, et al., 2002; Canepa and Pace, 2000; Canepa, et al., 2002). In addition, texture analysis has been applied to bathymetric data to generate predictive benthic habitat maps. Because of the quality and coverage and resolution of bathymetric data now available from multibeam echosounder systems in shallow water, Cutter, et al. (2003) were able to successfully segment seafloor facies and apparent benthic habitat types by applying texture analysis to bathymetric data from a shallow water survey. Cutter, et al. (2003) used a modified form of a texture feature called the Local Fourier Histogram (LFH) that had been developed by Zhou, et al. (2001) for grayscale image texture classification and discrimination. The LFH texture feature technique has been shown to classify textures as well or better than co-occurrence matrices, and have nearly the same texture recognition rate as Gabor features, however LFH features are less demanding, computationally (Zhou, et al., 2001). Cutter, et al (2003) modified the LFH technique by varying the spatial scales of the analysis. A similar approach is used in this study, however the spatial scale variation for the analysis was accomplished by using multiple grid resolutions.

This study involved LFH texture feature analysis of gridded bathymetric data from a Reson 8101ER multibeam sonar dataset collected in the waters of Saipan, in an area where naval anchorages exist. LFH analysis of bathymetry is part of the process of segmentation and
delineation of benthic and coral reef habitats in the Saipan anchorage area. The LFH analysis differentiates local morphological textures. A primary consideration requiring testing and ground truth data is whether the morphological textures distinguished represent distinct coral species, or morphotypes, or benthic substrate configurations related to substrate type classes.

Segmentations and classification maps were generated using unsupervised and supervised classification techniques. The initial stage involved using unsupervised classification of LFH texture features using k-means cluster analysis of LFH data from arbitrary grid cell blocks sizes and arbitrary number of cluster groups. After reviewing those preliminary segmentation maps against the digital terrain models (DTM's) and video ground-truth data, the strategy was modified such that training point sample locations would be used to develop representative, or prototypic, texture features for use in supervised classification scheme. Three approaches were implemented for supervised classification. Each involved a different method of selecting training point locations and whether there existed ground-truth data to suggest what the class represented. The supervised classifications were done by assembling training sample texture feature prototypes from (1) randomly selected set of locations, (2) video image data locations, and (3) a set of training samples including video, random, and arbitrary sample locations. Each approach to segmentation and classification provided reasonably good results, but each was dependent upon the number of, locations of, and positioning uncertainty associated with the training samples used.

LFH classification using the video ground-truth training samples should be the most robust method of seafloor characterization and description of benthic habitats in the study area, except that positioning uncertainty of the ground-truth data can lead to LFH class prototypes
being generated at the wrong location, and not all seafloor feature types were sampled by the video. In those cases, the LFH prototype can incorporate data that does not belong to a particular morphological texture class. Because many ground-truth data observations were available and mean LFH vectors were used, it is assumed that positioning error effects would not influence the overall form of the LFH prototypes. Using only the video ground-truth data for generation of LFH class prototypes also means that either all data are assigned to one of those classes, or another class representing "other" categories must be allowed. That was the origin of the "zero" class and the combined approach. By allowing for an "other" or "background" class, we are effectively saying that our set of prototypes does not represent all possible forms of feature vectors we will encounter. An "other" or "background" class is intended to apply to all observed data that do not fit our prototype classes. However, it was assumed that observations found to belong to none of the prototype classes were therefore part of the "other" class. It was apparent from the bathymetric map that there were likely to be several distinct morphological classes that would be classified as "other," thus that the "other" class would actually represent multiple undescribed classes. A strategy to allow for multiple additional classes that would be a refinement of the "other" class was imposed. This involved developing prototype classes from random and arbitrary training sample locations which would be used in conjunction with the video ground-truth LFH prototypes. The final classification is a result of the combined approach where each cell in the 5 m grid cell size map was classified according to the set of video, random, and arbitrary LFH prototypes.

The combined approach utilized class prototypes developed from training samples from ground-truth video data, randomly selected locations, as well as arbitrarily selected locations.

The combined approach improved the overall segmentation of the seafloor into distinct textures and apparent habitats, however not all could be assigned class, or habitat type, names without additional ground-truth data. Using all the LFH prototypes generated from random, video ground-truth, and arbitrary samples allowed classification according to all of the prototype classes. The resultant classified map from combined training origin classification was considered to better represent the actual distribution of seafloor morphologies and benthic habitats in the study area.

Datasets and Methods

Bathymetric data grids from Saipan

Bathymetric grids were generated from Reson Seabat 8101ER multibeam echosounder data at several grid cell resolutions by University of Hawaii, Hawaii Mapping Research Group (HMRG). Initial tests for segmentations and classifications were done using $4 \mathrm{~m}, 5 \mathrm{~m}$, and 10 m grids. Later, testing was done using 1 m and 3 m grids. It was decided that 5 m grids were to be a standard product, and that 1 m grids would not be a reasonable product to expect generally because of water depth ranges and storage space constraints. The 5 m grid cell map was regridded at 10 m and 20 m to explore the effects of map resolution on results of texture feature segmentation and classification. The 5 m grid was used for supervised classifications and final map products.

Seafloor video analysis data

Data from the analysis of seafloor video imagery collected from a towed camera sled was provided by Dr. John Rooney. Data from eleven video camera tows acquired in 2003 were used as ground-truth for the bathymetric data. Each video sequence was analyzed at 30 second intervals, providing from 18 to 96 samples per tow (Table 1).

Table 1. Number of analyzed frames (N) by video tow.	
TOW	N
103	24
104	31
105	21
106	35
108	34

Table 1. Number of analyzed frames (N) by video tow.	
109	27
110	96
111	33
112	18
113	26
114	27

The video data were reviewed and levels (categorization names) of variables were made consistent. Classification using mean LFH vectors from video locations were done according to the video data variable (SUBSTR) describing substrate. There were seven levels, or categories, of substrate: CaCO 3 Boulders; CaCO 3 Rock; CaCO 3 Rock and Sand; CaCO 3 Rubble; CaCO 3 Rubble and Sand; Sand; Sand and CaCO3 Rock. Those categories of the variable substrate from the video data were used to generate training sample LFH class data. The variable "Structure" was considered, but "Substrate" was correlated with "Structure." "Substrate" was chosen because it contained two categories ("CaCO3 Rubble" and "CaCO3 Rock") that separated and distinguished the "Structure" category "Mound." For every spatial position where a category of video substrate was identified, a LFH feature vector was calculated. Using all of the individual LFH feature vectors from each substrate category, a mean LFH feature vector was calculated for each substrate category and used as LFHvgt class prototypes (LFHvgt stands for LFH video ground-truth). Table 2 summarizes the number of samples for each video substrate category. Three of the substrate categories represented mixed substrates, and that could impact classification results.

Table 2. Levels of the video data variable
describing substrate (SUBSTR).

Level	Count
CaCO3 Boulders	5
CaCO3 Rock	79
CaCO3 Rock; Sand	20
CaCO3 Rubble	61
CaCO3 Rubble; Sand	6
Sand	178
Sand; CaCO3 Rock	23

The goal was to develop LFH prototype classes for video data classes that might have some textural expression in the bathymetry dataset. It was determined from reviewing the video data on the DTM that the "Structure" levels observed from video appeared associated with features observed in the 5 m DTM, at least. Some "Structure" level objects did not appear to have very distinct feature-for-feature expression in the 5 m grid DTM, therefore 3 m and 1 m grid DTM's were generated to see if carbonate structures such as coral heads might be observed directly in the DTM. In places where coral was identified in the video data, the 1 m DTM seemed to have roughness patterns that were similar to the coral structures. However, the evidence was not strong enough to support extensive analysis of the 1 m grid for this study.

LFH analysis and classification

Initial, unsupervised classification LFH analysis was applied to the Saipan bathymetry data gridded at three resolutions: $5 \mathrm{~m}, 10 \mathrm{~m}$, and 20 m grid cell sizes. LFH texture features were
produced using the method described by Zhou, et al. (2001). Multiple spatial scale analysis was done here using several grid resolutions, a modification of the technique used by Cutter, et al. (2003) where various ranges were used within a single dataset (multiple ranges surrounding a single cell of a single resolution grid).

LFH texture feature construction

A summary of the LFH analysis technique is provided here. Each non-edge grid cell has eight nearest neighborhood grid cells. The depth values of those eight cells are treated as a sequential data series $(z(0), \ldots z(7)$, where the first element $\mathrm{z}(0)$ was the top center cell that could be considered oriented northward of the central grid cell). The mean value of the neighborhood series was removed to prevent depth from influencing the analysis and classification. Then, a discrete Fourier transform (DFT) is applied to the data series. Applying the DFT to the local neighbors led to the texture feature name, "local Fourier," described by Zhou, et al (2001). The DFT of the eight-element series $\mathrm{z}(\mathrm{n})$, where $0 \leq \mathrm{n} \leq 7$, produces eight Fourier transform coefficients, $\mathrm{F}(\mathrm{k})$:

$$
\mathrm{F}(\mathrm{k})=(1 / \mathrm{N})^{*} \sum \mathrm{z}_{\mathrm{n}} \exp (\mathrm{j}(\pi / 4) \mathrm{nk}) \quad 0 \leq \mathrm{k} \leq 7
$$

(Zhou, et al., 2001). The template method of Yu, et al. (2002) was used to extract the local Fourier coefficients. Coefficients zero through three ($\mathrm{F}(0), \mathrm{F}(1), \mathrm{F}(2), \mathrm{F}(3))$ were used to construct the LFH texture feature for each block of grid cells. $\mathrm{F}(0)$ represents the zeroth component or average value, $\mathrm{F}(1), \mathrm{F}(2)$, and $\mathrm{F}(3)$ represent the $1^{\text {st }}, 2^{\text {nd }}$, and $3^{\text {rd }}$ harmonic frequencies: $1 / \mathrm{T}, 2 / \mathrm{T}$, and $3 / \mathrm{T}$, where T is the sampling period or series length in real units. If we make the assumption that the series represents a revolution around the central cell, and that grid
cell sizes represent sample intervals, we have a series of $8 *$ (grid cell size). For example, for the 5 m grid cell size map, the neighborhood series represents $\mathrm{T}=8 * 5=40 \mathrm{~m}$. Therefore, $\mathrm{F}(1)$, $F(2)$, and $F(3)$ represent waveforms with (spatial) frequencies of 1,2 , and 3 cycles per 40 m , or spatial wavelengths of approximately 40 m for $\mathrm{F}(1), 20 \mathrm{~m}$ for $\mathrm{F}(2)$, and 13.3 m for $\mathrm{F}(3)$. These are provided as general guidelines for understanding the methodology, and should not be used for interpretation of the LFH feature vectors in strict physical sense because the sampling period does not necessarily express exactly the fundamental frequency $(1 / \mathrm{T})$ of the phenomenon.

Since $F(k)$ are calculated for the neighbors surrounding each cell in the data grid, the values for $\mathrm{F}(\mathrm{k})$ are assigned to the central pixel. Therefore, the first products of the analysis are four Local Fourier coefficient maps (LFM's) that represent the values of $\mathrm{F}(\mathrm{k})$. Histograms are produced for the quantized (into eight bins) values of $\mathrm{F}(\mathrm{k})$ within blocks of grid cells. The size of grid cell blocks was arbitrary, and this study used 10 by 10 grid cell blocks. The Local Fourier Histogram (LFH) texture feature is generated by concatenating the histograms from each $\mathrm{F}(\mathrm{k})$. LFH texture features representing each block of grid cells, and assigned to the central cell location.

Unsupervised Classification

Unsupervised classification was done using cluster analysis (k-means clustering) and an arbitrary number of (10) cluster groups. LFH feature vectors from ten cell interval centers (ten by ten cell blocksize) were assigned to one of the ten cluster groups according to k-means clustering using FuzMe (Minasny and McBratney, 2000).

Supervised Classification

Supervised classification was done using LFH texture feature vectors from random and arbitrary training sample positions, and using mean LFH generated at estimated positions of video ground-truth image data. Supervised classification results are provided for the 5 m grid cell size bathymetric grid from Saipan. Class membership for each map grid cell were assigned using a minimum-distance classifier criterion. Two distance measures were tested: the Euclidean distance (L-2 norm) and the chi-squared statistic. There were no differences detectable in the results from either. The chi-squared statistic was used for final supervised classification maps because it has been shown to outperform, albeit only slightly, the Euclidean distance for texture image retrieval accuracy and efficiency (Zhang and Lu, 2003). A chi-squared statistical test was not applied, rather the class membership was assigned according to the minimum chisquared statistic calculated for the unclassified cell LFH data (observed) and the training sample or prototype data (expected). Single prototypes (see Tau and Gonzalez, 1974) were used for the training sample classes, requiring the assumption that the mean LFH for each prototype classes sufficiently represented that class, and that the spread or variation of prototypes within a particular class was relatively low. The chi-squared statistic was calculated as:

$$
\text { ChiSquaredStat }=\text { Sum }\left((\text { Observed-Expected })^{\wedge} 2 / \text { Expected }\right)
$$

over all bins, $\mathrm{LFH}(0)-\mathrm{LFH}(31)$.
Supervised classifications were done using random, arbitrary, and video ground-truthing training samples. LFH class prototypes were developed for random locations, arbitrary locations for which morphological characteristics were identifiable, and for video image analysis data. Then, all map grid cells were classified using the minimum distance classifier strategy, wherein
the class applied to the grid cell was the prototype class for which the minimum chi-squared statistic distance existed.

The geographic positions for the 10 and 100 random samples used to develop LFH prototypes are listed in the Appendix. The video ground-truth position data and interpretive data are listed in the Appendix. For each level of the video data variable "SUBSTR" representing substrate type, a mean LFH feature vector was calculated and used as the LFHvgt prototype. The arbitrary classes and position data where they occurred are listed in the Appendix.

Map products

Maps were generated from several steps of the LFH analysis process. These maps include Local Fourier Magnitude (LFM) maps depicting each of the Fourier coefficients used to construct the LFH texture features, a "LFMRGB" (that is also being called "psuedospectral") map depicting a simultaneous combination of Local Fourier coefficients. The psuedospectral LFMRGB map has red, green, and blue (RGB) color values weighted by the values of $F(1), F(2)$, and $\mathrm{F}(3)$. Finally, there are maps showing LFH texture feature classes from unsupervised and supervised classifications. Unsupervised classes represent a k-means cluster grouping where the LFH texture feature dataset was separated into ten cluster analysis classes. LFH maps from supervised classification with class names applied from video ground-truth data were generated from comparison of all LFH data to mean LFH vectors generated according to training samples.

Results

Bathymetric grid

Bathymetric map with 5 m grid cell, color coded depths
The gridded bathymetric data from Saipan used for LFH classification had a grid cell size of 5 m , and approximate dimensions of (E) 11910 by (N) 14590 by (z) 297 m (Figure 1).

Figure 1. Saipan bathymetric data grid, with grid cell size of 5 m , color-coded depths. Coordinates shown are Eastings and Northings (meters) of Universal Transverse Mercator (UTM) projection zone 55.

Bathymetric map with 5 m grid cell, shaded surface

Depicting the bathymetric grid as a shaded surface (Figure 2) reveals some of the gross morphological attributes such as a deep central channel, bordered by shoal regions with what appear to be a variety of reefs and sedimented areas.

Figure 2. Saipan bathymetric data grid, with grid cell size of 5 m , shaded surface.

LFM maps from three grid cell sizes

5 m grid cell LFM maps

The LFM maps from the 5 m grid (Figure 3) that formed the basis for the LFH analyses and classifications, were color-coded such that red, green, and blue were assigned to $\mathrm{F}(1), \mathrm{F}(2)$, and $\mathrm{F}(3)$. Higher intensities represent larger values of those three components.

Figure 3. LFM maps for the 5 m grid cell size bathymetric data from Saipan. a) LFM1, b) LFM2, c) LFM3.

10 m grid cell LFM maps

The LFM maps from the 10 m grid (Figure 4) were color-coded such that red, green, and blue were assigned to $\mathrm{F}(1), \mathrm{F}(2)$, and $\mathrm{F}(3)$.

Figure 4. LFM maps from 10 m grid cell size Saipan bathymetric data. a) LFM1, b) LFM2, c) LFM3.

20 m grid cell LFM maps

The LFM maps from the 20 m grid (Figure 4) were color-coded such that red, green, and blue were assigned to $\mathrm{F}(1), \mathrm{F}(2)$, and $\mathrm{F}(3)$.

Figure 5. LFM maps from 20 m grid cell size Saipan bathymetric data. a) LFM1, b) LFM2, c) LFM3.

Pseudospectral (LFMRGB) maps from three grid cell sizes

By combining the individual weighted and colorized LFM maps, we develop what we call a psuedospectral, or LFMRGB, map for each grid cell size map analyzed (Figures 6, 7, and 8). Using intensity and color, the psuedospectral LFMRGB maps convey multiple spatial scale roughness of the seafloor, where smooth seafloor is represented by black or low intensities, low spatial frequency variation in the bathymetry is represented by red, intermediate spatial frequency variation in bathymetry is represented by green, and high spatial frequency variation in bathymetry is represented by blue. These can be interpreted to some extent as: where a pure color indicates dominance of one spatial frequency roughness component, and combinations of colors as representing the simultaneous occurrence of combinations of spatial frequency roughness features. However, because the DFT represents a sample series and not the fundamental waveform, and because the data are a regular grid meant to represent the seafloor shape at a particular resolution, these should not be interpreted in strict physical sense.

Figure 6. Pseudospectral LFMRGB map for Saipan bathymetry grid with 5 m cellsize. Red Green and Blue image color band values represent weighted values of local Fourier coefficients 1,2 , and $3(F(1), F(2), F(3))$, which represent variation at a range of spatial frequencies relatively low, medium, and high.

Figure 7. Pseudospectral LFMRGB map for Saipan bathymetry grid with 10 m cellsize. Red Green and Blue image color band values represent weighted values of local Fourier coefficients 1,2 , and $3(\mathrm{~F}(1), \mathrm{F}(2), \mathrm{F}(3))$, which represent variation at a range of spatial frequencies relatively low, medium, and high.

Figure 8. Pseudospectral LFMRGB map for Saipan bathymetry grid with 20 m cellsize. Red Green and Blue image color band values represent weighted values of local Fourier coefficients 1,2 , and $3(\mathrm{~F}(1), \mathrm{F}(2), \mathrm{F}(3))$, which represent variation at a range of spatial frequencies relatively low, medium, and high.

LFH maps from unsupervised classification

The initial classifications of the Saipan bathymetric data gridded at three resolutions (grid cell sizes) were done by grouping the LFH data into 10 cluster group (k-mean) classes. One of the cluster group classes was assigned to each block of cells (10 by 10 cells) according to k means clustering. The number of (10) cluster groups was chosen arbitrarily. The intention for these unsupervised classifications per block were to provide initial segmentations that could be assessed for general agreement with morphological feature regions and patterns identified or manual delineated by investigators. The results of unsupervised classifications per block using arbitrary number of cluster groups for $5 \mathrm{~m}, 10 \mathrm{~m}$, and 20 m grid cell size DTM's are shown in Figures 9, 10, and 11. These results reveal that the classifications using LFH were generally effective at segmenting primary regions with distinct morphological textures, but also that the analysis is sensitive to the number of classes chosen, the spatial integration scale used, and the resolution of the data. Spatial integration scales for the analysis were a function of the block sizes of ten by ten cells, such that the integration scales for LFH feature vectors from the $5 \mathrm{~m}, 10$ m , and 20 m grids were $50 \mathrm{~m}, 100 \mathrm{~m}$ and 200 m .

SaipanAnc LFH map [05 m cell, 10 class]

Figure 9. LFH class map for 5 m grid bathymetry data, 10 cluster class groups, and blocksize of 10 by 10 cells. Classes were assigned to each block of cells. Each cell block was assigned one of the classes formed by k -means clustering using 10 groups.

SaipanAnc LFH map [10m cell, 10 class]

Figure 10. LFH class map for 10 m bathymetric grid from Saipan. Each cell block was assigned one of the classes formed by k-means clustering using 10 groups.

SaipanAnc LFH map [20 m cell, 10 class]

Figure 11. LFH class map for 20 m bathymetric grid from Saipan. Each cell block was assigned one of the classes formed by k-means clustering using 10 groups.

Supervised classification results

Supervised LFH classification from random training samples

The supervised classifications using randomly selected locations to accumulate training sample data used to develop prototype LFH classes. Two sets of random training sample locations were used, one with 10 training samples (Figure 12, Table A-01) and one with 100 training samples (Figure 14, Table A-02). The results of classification by randomly located LFH prototypes from 10 training samples is shown in Figure 13, and the classification by 100 training samples is shown in Figure 15. Classes were sorted according to values of LFH1, LFH2, and LFH3, and a colormap was assigned so going from red to yellow to green to blue corresponded to the representation of relatively higher spatial frequency components of the LFH feature vector. Reds represent classes dominated by lower spatial frequency variation, greens represent moderate spatial frequency variation, and blues represent classes dominated by higher frequency variation.

It could be argued that classification by prototypes generated at randomly located training samples constitutes unsupervised classification. However, the approach is included under the supervised classification section for this study because it requires user intervention for the generation of training sample positions, for determination whether training samples were retained for use, and for the ordering of classes by relative dominance.

Locations of the 10 random samples used to generate prototype LFH classes

Figure 12. Locations of the 10 random samples used to generate prototype LFH classes (LFHrand10).

Classification by prototype LFH classes from 10 randomly selected samples

Figure 13. Classification of Saipan 5 m bathymetric grid according to 10 prototype LFH classes generated by 10 randomly selected sample locations. Class assigned to every cell (per cell classification).

Locations of the 100 random samples used to generate prototype LFH classes

Figure 14. Locations of the 100 random samples used to generate prototype LFH classes (LFHrand100).

Classification by prototype LFH classes from 100 randomly selected points

Figure 15. Classification (per cell) of 5 m bathymetric grid from Saipan according to 100 prototype LFH classes generated from data at 100 randomly selected sample locations.

Supervised LFH classification from video data training samples

Supervised classification was implemented using LFH prototypes developed for each of the seven substrate categories described by the video data variable SUBSTR. The video tow transects were all located in the eastern part of the Saipan study area (Figure 16). A close-up view of the video tow transects over the 5 m DTM is shown in Figure 17. The set of 372 video analysis observations for which determinations of substrate were made are shown in Figure 18, and are color-coded by substrate category. The results of LFH classification done according to prototypes developed from locations of the seafloor where the seven substrate categories were identified as well as a "zero" class (Table 3, Table A-07) are shown in Figure 19. This figure depicts the spatial distributions of seafloor LFH texture feature classes assigned values of the most similar substrate class LFH prototype. This "LFHvgt" map predicts substrate type for every DTM grid cell according to texture features developed from the sparse ground-truth data relating substrate type.

Table 3. Names of class prototypes applied for LFH
classification by video ground-truth (vgt) training.

ID	Name
0	zero
1	CaCO3 Boulders
2	CaCO3 Rock
3	CaCO3 Rock and Sand
4	CaCO3 Rubble
5	CaCO3 Rubble and Sand
6	Sand
7	Sand and CaCO3 Rock

Figure 16. Video tow transects within the Saipan study area, shown over bathymetric data.

Figure 17. Close-up view of region within Saipan study area containing video tow transects.

Figure 18. Video transects color coded according to the variable describing substrate (SUBSTR). Seven levels of the substrate variable were identified.

Figure 19. LFHvgt class map (per cell) for the Saipan 5 m bathymetric grid. LFH classes were assigned based upon minimum-distance classification with prototype LFH classes that were generated from video ground-truth (vgt) data. Classes represent identified levels of the video data variable substrate (SUBSTR).

Figure 20. Close-up view of LFHvgt classified (per cell) Saipan 5 m bathymetric grid.

Figure 21. LFHvgt classified (per cell) map close-up view, superimposed by video tow transects color-coded by substrate class.

Supervised LFH classification from video, random, and arbitrary training samples

The primary morphological region spatial distributions are similar to segmentations suggested by previous (random and video ground-truth) classifications. However, the number of named classes is greater since the classes predicted are a combination of the sets of video substrate categories, arbitrary morphologies described from analysis of the DTM, a "zero" class, and a set of classes from the random prototypes that are now considered "background" or "other" classes (Table 4, Table A-08). The "background" or "other" classes are shown colored light gray in Figure 22.

Table 4. Original set membership and names of class prototypes
applied for LFH classification by random, arbitrary, and video
ground-truth training.

ID	Source	Name
0	General	zero
1	Random	Rand01 (background1)
2	Random	Rand02 (background2)
3	Random	Rand03 (background3)
4	Random	Rand04 (background4)
5	Random	Rand05 (background5)
6	Random	Rand06 (background6)
7	Random	Rand07 (background7)
8	Random	Rand08 (background8)
9	Random	Rand09 (background9)
10	Random	Rand10 (DeepChannelBank)
11	Arbitrary	ChannelBottomNoisy
12	Arbitrary	LargeSlopes
13	Arbitrary	DeepChannelBottom
14	Arbitrary	DredgedChannel
15	Arbitrary	Heterogeneous
16	Arbitrary	MoundsCommon
17	Arbitrary	NEhighfreqrough
18	Arbitrary	ReefBorderedSediment
19	Arbitrary	ReefEdgeW
20	Arbitrary	ReefRidgeSE
21	Arbitrary	SmoothSedimented
22	Arbitrary	SpurGrooveLike
23	VideoGroundTrut	CaCO3 Boulders
24	VideoGroundTrut	CaCO3 Rock
25	VideoGroundTrut	CaCO3 Rock and Sand
26	VideoGroundTrut	CaCO3 Rubble
27	VideoGroundTrut	CaCO3 Rubble and Sand
28	VideoGroundTrut	Sand
29	VideoGroundTrut	Sand and CaCO3 Rock

Figure 22. Classification (per cell) of 5 m bathymetric grid from Saipan according to prototype LFH classes generated from data from the combined set of 10 random, 12 arbitrary, and 7 video ground-truth substrate classes, and a "zero" class.

Discussion

LFH and spatial frequencies

The intermediate products of the LFH analysis such as the LFM coefficient maps can be useful for interpretation of seafloor characteristics because they effectively represent the variability of the bathymetry, as the magnitude of waveforms that describe the data series, at multiple spatial frequencies. Effectively, LFH is a multi-scale behaviour of the variation of local bathymetry, and the LFM's represent the magnitude of variability at each spatial scale. Maps of the LFH texture featured classified using cluster analysis are good for segmentation of seafloor into regions of distinctive morphology and data reduction. However, the LFMRGB maps provide an intuitive depiction of seafloor texture distributions because the LFMRGB map weights each color band (red, green, and blue) according to Local Fourier coefficients that effectively describe behavior of seafloor bathymetry at three different spatial scales. Red coloration was assigned to the lowest spatial frequency component, $\mathrm{F}(1)$ of the three used for the LFMRGB map; green was applied to $\mathrm{F}(2)$, and blue was assigned to $\mathrm{F}(3)$. The spatial frequencies represented by $\mathrm{F}(\mathrm{k})$ depend upon the resolution of the data and grid cell size, where $\mathrm{F}(1), \mathrm{F}(2)$, and $\mathrm{F}(3)$ represent waveforms with one, two, and three cycles per period, and the period is the length of the data series. For example, the eight local neighbor cell series in a 5 m grid cellsize would have a period of 40 m using the straight line path through cell midpoints. The sets of LFM (Figures 2, 5, 8), LFH, and LFHRGB maps are provided for the three grid resolutions analyzed ($5 \mathrm{~m}, 10 \mathrm{~m}$, and 20 m), and are shown as figures in this document, and the LFH class maps are also included in larger form in separate documents.

Morphologies

The texture feature maps distinguish and segment local morphological textures. There appear to be LFH texture classes (Figure 3) that coincide with regions of different coral reef growth, edges of reefs, deep sloping channels, and relatively flat bottom. Whether the LFH classes actually represent coral species, morphotypes, or sedimentary facies depends upon whether those seafloor attributes have a bathymetric expression at the data resolution. Thus, data resolution and spatial scale of analysis have an important role in interpretation of the texture feature maps. The blocksize (representing a spatial integration scale) and the number of classes used for the unsupervised classification by LFH texture features were arbitrary. Based upon comparison of segmentation results with ground-truth data interpretation, blocksize could be modified and classes could be lumped or split to better fit observations. However, previous efforts have shown that the efforts involved in adjusting class numbers and integration scales were not as effective as using supervised classification approaches, especially when ground-truth data were available.

The intensity and color of the LFMRGB maps (Figures 3, 6, 9) represent the weighted magnitude and relative spatial frequency of local bathymetric variability. The LFMRGB maps from different resolutions suggest similar patterns of relative contributions of the lower, medium, and higher spatial frequency components, as their similar RGB coloration patterns show. The apparent implication of that is that any of the three grid resolutions should produce similar segmentations and seafloor texture classifications for this study area. However, the lower resolution maps (those with larger grid cell sizes) are not expected to relate well to the features of interest and features identifiable in the video image ground-truth data.

The LFH maps from all grid resolutions analyzed show vaguely similar spatial patterns of LFH classes. Note that LFH classes from different resolutions are not color coded the same (Figures 4, 7, 10) since a texture feature from one resolution is not the same as the texture feature from another. The differences in spatial distributions of LFH classes at the different resolutions results primarily from the blocksize extent (integration scale). Ten by ten grid-cell blocksizes were used for each analysis, therefore the length of a side of a block was $50 \mathrm{~m}, 100 \mathrm{~m}$, and 200 m , from analysis of the $5 \mathrm{~m}, 10 \mathrm{~m}$, and 20 m grids. Lower resolution gridding tends to simplify the resultant LFH class segmentation map and obscure some textures with limited spatial coverage.

Unsupervised classification

Unsupervised classifications provided reasonable segmentation and apparently accurate representation of the spatial distributions of different morphological features as shown in Figures. However detailed interpretation of those results were difficult, and apparent misclassifications require arbitrary adjustment of some aspect of the classification procedure, which is an inefficient means of optimization. It was apparent from reviewing the results of unsupervised LFH classification that results from the 5 m grid cell size DTM agreed better with the delineations that would have been produced by investigators. Results from classification of the 10 m grid cell size DTM showed marginally good agreement and would likely be functional. However, results from classification of the 20 m grid cell size DTM per block had limited effectiveness for separating the distinguishable morphological regions. Results from the analysis of the 20 m grid where a class was assigned only for every block reveal that much detail is lost and that classes did not
concisely represent the seafloor features of interest. The 10 m grid per block results were slightly better, however it is unclear whether some of the seafloor features of interest had bathymetric expressions that persisted at the 10 m grid resolution. Therefore, the 5 m grid cell size DTM and classification per cell, rather than per block, classifications for additional classification strategies.

The results of unsupervised LFH classification per block revealed that the classifications using LFH were generally effective at segmenting primary regions with distinct morphological textures, but also that the analysis is sensitive to the number of classes chosen, the spatial integration scale used, and especially the resolution of the data. The 5 m grid was determined to be the highest resolution map that could be expected as a standard product. Whether that grid cell size (DTM resolution) is suitable for discrimination and accurate classification of seafloor features according to texture feature analysis depends upon the sizes and bathymetric expression of those particular seafloor feature types.

Supervised classification

Supervised classification according to random training point classes

The class prototypes from the random training samples were sorted according to values of LFH1, LFH2, and LFH3, and a colormap was assigned so going from red to yellow to green to blue corresponded to the representation of relatively higher spatial frequency components of the LFH feature vector. Therefore, the reds represented classes dominated by lower spatial frequency variation, greens represent moderate spatial frequency variation, and blues represent classes dominated by higher frequency variation. Ordering and coloring the classes according to that scheme means that the LFH maps produced from classification according to random training
samples (LFHrand) are analogous to discrete representations of the pseudospectral LFMRGB maps. The LFHrand and the LFMRGB maps represent the relative contributions of seafloor roughness occurring at three spatial freqencies. Assignment of long wavelength colors (reds) to low spatial frequency variation components and short wavelength colors (blues) to high spatial frequency components produces maps with intuitive properties. The colors and colorized classes of the LFMRGB and LFHrand maps fit well with the spatial distributions of the major seafloor morphological features identifiable in the DTM.

Supervised classification according to video data classes

This classification was done by assigning to each map grid cell one of the classes represented by the seven LFH prototypes generated from the levels of the video data variable "substrate." Every cell was assigned one of the video substrate classes based upon minimum distance criteria. Alternative classes were not allowed, thus every cell was effectively forced to accept one of the substrate level classes. Many of the apparent misclassifications in the resultant map were caused by classifying only according to the seven video substrate level classes plus a zero class. In other words, all cells were given a class according to minimum distance from a training class. For that to provide an accurate segmentation and classification, it would be necessary that the training sample classes represent all possible classes.

Video position offset and positioning error may have contributed to classification errors. If positioning error or offset existed, then the location identified and used to generate the LFH for the prototype class could include textures from substrates or structures other than those identified by the video analysis. Two approaches to counter that and keep from forcing a potentially
erroneous classification involve: 1) setting a threshold distance, beyond which a cell would be classified as "other"; and 2) adding additional training samples from a set of randomly selected or user-specified training positions.

An additional training sample class was added to the set of video ground-truth prototypes in order to accommodate other obvious features in the DTM that were not sampled by the video tows. A "zero" class was added to account for flat, smooth and low frequency variation data. The results from this analysis suggest that the "zero" class represented smooth flat and sloping regions, including the deep channel banks, but also steep peaks within the reef areas.

Considering the results of the supervised classification using video substrate levels and a zero class, it appeared to poorly represent the "sand" class. Initially, it was believed that there were so many "sand" samples, the training sample LFH vector accomodated all of them, thus becoming too broad and incorporating too much variability. It was considered to build a new "sand" LFH class using only some of those, and maybe select them by hand. However, after reviewing these classification results with video tows overlaid, it was apparent that the classification was likely accurate. Viewing the map from what would be considered a large distance, such that only large features and patterns could be seen, there appeared to be several regions that should have been classed "Sand" rather than "Sand and CaCO3 Rock." Closer inspection revealed that the regions did indeed contain many lumps that were likely CaCO 3 rocks or boulders among the otherwise smooth and likely sandy region. Therefore, the classification was retained and the prototype for sand was not altered.

The"LFHvgt" map predicted substrate type for every DTM grid cell according to texture features developed from the sparse ground-truth data relating substrate type. However, the video
data did not sample and could not be expected to represent all morphologies, therefore some erroneous predictions, or misclassifications are inevitable.

Supervised classification according to random, arbitrary, and video prototypes

The supervised classification used a set of prototypes derived from random, video data, and inspection of the DTM should provide a more thorough representation of the apparent morphological and substrate classes that existed within the Saipan study area. However, because there are so many classes, the classified map can appear somewhat confusing. It would be best to examine the results of combined set classification using the digital map data interactively such that each class is switched on and off individually while superimposed on the DTM. The spatial distributions and patterns do appear similar to results from classification using random and video ground-truth data LFH prototypes. Some of the predicted classes had prototypes that likely do not specifically represent the morphological class hoped, such as for example reef ridges or reef edges. It is expected that morphologies such as those generally are characterized by feature dimensions not encompassed by the local neighborhood or spatial integration scales incorporated by the LFH. However, many of the other morphological class predictions matched expected spatial distributions and are expected to be accurate predictions of seafloor class when the set of classes used for this analysis is considered.

Classes and interpretations

Some of the classifications resulting from supervised classification using video ground-truth data

Figure 23. Video tows color coded by "Sand" (yellow) and "Sand and CaCO3" (green) categories of substrate (SUBSTR).
appeared to be misclassifications, or not representative of the video ground-truth designations. Particularly, the sand category from video substrate was observed most frequently in the video data (Figure 22). However, the coverage and distribution of the sand class in the LFHvgt map had a lower proportion coverage of the "Sand" class relative to the "CaCO3 Rock and Sand" class. It should be noted that the video observations where sand was identified were often in close proximity to large features on the seafloor, evident in the DTM (Figure 22). That is important because the texture feature analysis works not only on a local neighborhood of the

DTM depth data, but also involves a spatial integration scale several times larger than the grid cell size. The video images usually represent areas of the seafloor smaller than the area covered by a single 5 m grid cell. Closer examination of the classified map compared to the DTM reveals that the texture feature classification discriminated between homogeneous regions and regions with scattered lumps. Adjacent areas classified as "Sand" and "CaCO3 Rock and Sand" (Figure

Figure 24. LFH classification by video ground-truth (vgt) prototypes. Close-up view of areas classified as "Sand" and
"CaCO3 Rock and Sand". The square near 359400, 1682400 indicates the blocksize or spatial integration scale used for the classification of the 5 m grid cell size bathymetric grid.
23) reveal the seafloor attributes that lead to the unexpected class coverages. The homogeneous, smooth regions were classified as "Sand" and the regions with sparse lumps (perhaps patch reefs) amidst otherwise smooth regions were classified as "CaCO3 Rock and Sand" (Figure 24). In this case, the texture feature classification actually provided what appeared to be a more reliable prediction of the local seafloor properties than the video ground-truth data. Of course, additional ground-truth information is required to determine whether the predictions (that "Sand" exists in
those locations) by classification are accurate. The classification should generally agree with the

Figure 25. Close-up view of the DTM (5 m grid cell size, shaded bathymetry) showing seafloor features affecting "Sand" and "CaCO3 Rock and Sand" LFH classes.
ground-truth data used to generate training sample derived prototype classes, however this case demonstrates the possibility for disparity. Disparities between what the ground-truth data and classifications relate can be induced by the spatial scales of observation versus spatial integration scale of classification.

Clearly, several of the classifications resulted in similar segmentations, meaning that the map was often divided into the same predominant regions with characteristic and relatively homogeneous textures. These regions were often associated with particular substrates and structures, as identified in the video data, and with morphological characteristics identifiable from the bathymetric map (DTM). Where video data was lacking, and morphological characteristics not clearly identifiable or where seafloor features were not represented by a particular texture, the combined classification allowed for several random prototypes. The set of
random classes were considered to be a general background class, or "other" classes that were not previously identified.

References

Canepa, G., Pace, N.G., 2000. Seafloor segmentation from multibeam bathymetric sonar. In: Chevret, P. and Zakharia, M.E., (Eds.) Proceedings of the Fifth European Conference on Underwater Acoustics, ECUA 2000. Lyon, France.

Canepa, G., Pouliquen, E., Pace, N.G., Figoli, A., Franchi, P., 2002. Validation of a seafloor segmentation algorithm for multibeam data. Proceedings of the Sixth European Conference on Underwater Acoustics, ECUA 2002, 24-27 June 2002. Gdansk, Poland, pp. 89-94.

Cutter, G. R., Rzhanov, Y., Mayer, L. A., 2003. Automated segmentation of seafloor bathymetry from multibeam echosounder data using local Fourier histogram texture features. Journal of Experimental Marine Biology and Ecology, 285/286, 355-370.

Huvenne, V. A. I., Blondel, Ph., Henriet, J.-P., 2002. Textural analyses of sidescan sonar imagery from two mound provinces in the Porcupine Seabight. Marine Geology, 189, 323-341.

Minasny, B., McBratney, A.B., 2000. FuzME version 2.1,Australian Centre for Precision Agriculture,The University of Sydney, NSW 2006. (http://www.usyd.edu.au/su/agric/acpa).

Tou, J. T., Gonzalez, R. C., 1974. Pattern recognition principles. Addison-Wesley Publishing Co., Reading, Massachusetts.

Yu, H., Li, M., Zhang, H-J., Feng, J., 2002. Color texture moments for content-based image
retrieval. IEEE ICIP 2002, III-929-932.
Zhang, D. S., Lu, G., 2003. Evaluation of similarity measurement for image retrieval. In: Proc. Of IEEE International Conference on Neural Networks and Signal Processing (ICNNSP03), pp. 928931, Nanjing, China, 14-17 December, 2003.

Zhou, F., Feng, J., Shi, Q., 2001. Texture feature based on local Fourier transform. ICIP 2001 conference proceedings, pp. 610-613.

Appendix

Table A-01. Ten random training sample set positions (UTM Easting, Northing (m), zone 55 north) used for LFHrand10 prototype class vectors.

name	E	N
Rand01	358593.8	1681714.0
Rand02	359993.8	1682714.0
Rand03	360693.8	1683514.0
Rand04	356693.8	1680114.0
Rand05	356093.8	1684014.0
Rand06	352993.8	1680614.0
Rand07	357493.8	1677814.0
Rand08	353993.8	1680014.0
Rand09	358493.8	1672114.0
Rand10	351793.8	1676714.0

Table A-02. One hundred random training sample set positions (UTM Easting, Northing (m), zone 55 north) used for LFHrand100 prototype class vectors.

E	N
358493.8	1672114.0
355593.8	1672214.0
358693.8	1672514.0
357993.8	1672814.0
358593.8	1672814.0
356893.8	1673514.0
358793.8	1674014.0
356893.8	1674314.0
356693.8	1674514.0
356793.8	1674514.0
357693.8	1674614.0
357893.8	1675814.0
358193.8	1676014.0
350793.8	1676214.0
357893.8	1676414.0
357893.8	1676514.0
358993.8	166514.0
351793.8	1676714.0
358193.8	1676814.0
358393.8	1676814.0
351793.8	1677014.0
356693.8	1677114.0
357993.8	1677114.0
356993.8	1677214.0
352693.8	1677414.0
357093.8	1677814.0
357493.8	1677814.0
357593.8	1677814.0
350493.8	1678014.0
358993.8	1678114.0
350993.8	1678314.0

358393.8	1678414.0
351393.8	1678514.0
359793.8	1678514.0
353193.8	1678614.0
352993.8	1679014.0
353493.8	1679214.0
359593.8	1679214.0
352293.8	1679314.0
358193.8	1679314.0
360293.8	1679314.0
353593.8	1679414.0
356593.8	1679414.0
358793.8	1679414.0
359593.8	1679514.0
356893.8	1679714.0
357893.8	1679714.0
351493.8	1679914.0
355493.8	1679914.0
356093.8	1679914.0
359093.8	1679914.0
353793.8	1680014.0
356693.8	1680114.0
352593.8	1680414.0
351593.8	1680514.0
357893.8	1680514.0
352093.8	1680614.0
352993.8	1680614.0
360293.8	1680614.0
356293.8	1680714.0
358493.8	1680714.0
356993.8	1680814.0
356293.8	1680914.0
356493.8	1681214.0
352293.8	1681414.0
352993.8	1681514.0
357193.8	1681514.0
360293.8	1681614.0
354493.8	1681714.0
358593.8	1681714.0
358393.8	1682114.0
352493.8	1682314.0
356693.8	1682514.0
359793.8	1682714.0
358293.8	1682814.0
356393.8	1682914.0
358293.8	1682914.0
359593.8	1682914.0
352993.8	1683014.0
359293.8	1683014.0
354493.8	1683114.0
356293.8	1683314.0
356793.8	1683314.0
360693.8	1683514.0
359393.8	1683614.0
353893.8	1683914.0
356093.8	1684014.0
357893.8	1684014.0
360593.8	1684014.0
357893.8	1684114.0
356093.8	1684414.0
359293.8	1684414.0
359093.8	1684514.0
355093.8	1685214.0
355593.8	1685314.0
355793.8	1685414.0
359593.8	1685414.0

$355993.8 \quad 1685614.0$
$360593.8 \quad 1685914.0$
$360393.8 \quad 1686214.0$

Table A-03. Video ground-truth sample tow details and positions for analyzed frames.

ID	TO	F	E	N	LATITUDE	LONGITUD	TIME
							SYSTE
1	103	1	356972.033	1679260.21	15.1853333	145.66855	09:33:45 AM

ID	TO	F	E		N	LATITUDE	LONGITUD	TIME

ID	TO	F	E	N	LATITUDE	LONGITUD	TIME	SYSTE
	,	R				E		M
126	108	13	358960.913	1681549.41	15.2061333	145.686933	08:47:00 AM	Saipan
127	108	14	358957.323	1681542.06	15.2060667	145.6869	08:47:30 AM	Saipan
130	108	17	358948.144	1681516.29	15.2058333	145.686816	08:49:00 AM	Saipan
131	108	18	358944.555	1681508.95	15.2057667	145.686783	08:49:30 AM	Saipan
132	108	19	358940.954	1681499.74	15.2056833	145.68675	08:50:00 AM	Saipan
133	108	20	358939.083	1681492.39	15.2056167	145.686733	08:50:30 AM	Saipan
134	108	21	358935.483	1681483.18	15.2055333	145.6867	08:51:00 AM	Saipan
135	108	22	358933.601	1681473.98	15.20545	145.686683	08:51:30 AM	Saipan
136	108	23	358930.012	1681466.62	15.2053833	145.68665	08:52:00 AM	Saipan
137	108	24	358928.141	1681459.26	15.2053167	145.686633	08:52:30 AM	Saipan
138	108	25	358924.54	1681450.05	15.2052333	145.6866	08:53:00 AM	Saipan
139	108	26	358922.659	1681440.85	15.20515	145.686583	08:53:30 AM	Saipan
140	108	27	358920.788	1681433.48	15.2050833	145.686566	08:54:00 AM	Saipan
141	108	28	358917.187	1681424.29	15.205	145.686533	08:54:30 AM	Saipan
142	108	29	358911.761	1681415.1	15.2049167	145.686483	08:55:00 AM	Saipan
143	108	30	358909.879	1681405.89	15.2048333	145.686466	08:55:30 AM	Saipan
144	108	31	358904.452	1681396.71	15.20475	145.686416	08:56:00 AM	Saipan
145	108	32	358899.025	1681387.52	15.2046667	145.686366	08:56:30 AM	Saipan
146	108	33	358895.424	1681378.32	15.2045833	145.686333	08:57:00 AM	Saipan
147	108	34	358889.998	1681369.13	15.2045	145.686283	08:57:30 AM	Saipan
150	108	37	358875.543	1681341.56	15.20425	145.68615	08:59:00 AM	Saipan
151	108	38	358870.116	1681332.38	15.2041667	145.6861	08:59:30 AM	Saipan
158	109	2	359462.922	1679859.21	15.1908833	145.6917	09:30:10 AM	SAI
159	109	3	359455.69	1679853.72	15.1908333	145.691633	09:30:40 AM	SAI
160	109	4	359446.74	1679848.24	15.1907833	145.69155	09:31:10 AM	SAI
161	109	5	359441.335	1679842.74	15.1907333	145.6915	09:31:40 AM	SAI
162	109	6	359435.93	1679837.24	15.1906833	145.69145	09:32:10 AM	SAI
163	109		359428.688	1679829.92	15.1906167	145.691383	09:32:40 AM	SAI
164	109		359421.467	1679826.26	15.1905833	145.691316	09:33:10 AM	SAI
165	109		359416.052	1679818.93	15.1905167	145.691266	09:33:40 AM	SAI
166	109	10	359410.636	1679811.58	15.19045	145.691216	09:34:10 AM	SAI
167	109	11	359405.209	1679802.4	15.1903667	145.691166	09:34:40 AM	SAI
168	109	12	359401.619	1679795.04	15.1903	145.691133	09:35:10 AM	SAI
169	109	13	359396.192	1679785.86	15.1902167	145.691083	09:35:40 AM	SAI
170	109	14	359390.765	1679776.66	15.1901333	145.691033	09:36:10 AM	SAI
171	109	15	359385.36	1679771.16	15.1900833	145.690983	09:36:40 AM	SAI
174	109	18	359374.473	1679747.26	15.1898667	145.690883	09:38:10 AM	SAI
175	109	19	359370.883	1679739.91	15.1898	145.69085	09:38:40 AM	SAI
178	109	22	359363.52	1679712.29	15.18955	145.690783	09:40:10 AM	SAI
179	109	23	359359.93	1679704.93	15.1894833	145.69075	09:40:40 AM	SAI
180	109	24	359356.233	1679697.59	15.1894167	145.690716	09:41:10 AM	SAI
181	109	25	359352.621	1679686.54	15.1893167	145.690683	09:41:40 AM	SAI
182	109	26	359349.032	1679679.19	15.18925	145.69065	09:42:10 AM	SAI
183	109	27	359345.324	1679669.99	15.1891667	145.690616	09:42:40 AM	SAI
184	109	28	359341.734	1679662.64	15.1891	145.690583	09:43:10 AM	SAI
185	109	29	359339.875	1679657.12	15.18905	145.690566	09:43:40 AM	SAI
186	109	30	359336.285	1679649.76	15.1889833	145.690533	09:44:10 AM	SAI
187	109	31	359334.403	1679640.55	15.1889	145.690516	09:44:40 AM	SAI
188	109	32	359330.803	1679631.36	15.1888167	145.690483	09:45:10 AM	SAI
189	110		357464.829	1680509.25	15.19665	145.673066	10:19:55 AM	SAI
190	110		357473.865	1680511.05	15.1966667	145.67315	10:20:25 AM	SAI
191	110		357482.793	1680512.83	15.1966833	145.673233	10:20:55 AM	SAI
192	110		357491.721	1680514.62	15.1967	145.673316	10:21:25 AM	SAI
193	110	5	357502.475	1680516.41	15.1967167	145.673416	10:21:55 AM	SAI
194	110	6	357513.23	1680518.18	15.1967333	145.673516	10:22:25 AM	SAI
195	110		357523.973	1680518.11	15.1967333	145.673616	10:22:55 AM	SAI
196	110		357534.728	1680519.89	15.19675	145.673716	10:23:25 AM	SAI
197	110	9	357545.471	1680519.83	15.19675	145.673816	10:23:55 AM	SAI
198	110	10	357556.226	1680521.61	15.1967667	145.673916	10:24:25 AM	SAI
199	110	11	357566.969	1680521.54	15.1967667	145.674016	10:24:55 AM	SAI
200	110	12	357579.55	1680523.3	15.1967833	145.674133	10:25:25 AM	SAI
201	110	13	357590.305	1680525.09	15.1968	145.674233	10:25:55 AM	SAI
202	110	14	357602.885	1680526.86	15.1968167	145.67435	10:26:25 AM	SAI

| ID | TO | F | E | N | LATITUDE | LONGITUD | TIME |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | SYSTE

| ID | TO | F | E | N | LATITUDE | LONGITUD | TIME |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | SYSTE

$\left.\begin{array}{lrrrrrrrr}\text { ID } & \text { TO } & \mathrm{F} & \mathrm{E} & \text { NATITUDE } & \text { LONGITUD } & \text { TIME } & \text { SYSTE } \\ & & & & & & & & \mathrm{E}\end{array}\right)$

Table A-04. Video ground-truth data for analyzed frames.

TO	F STRUCTURE	SUBSTR	SUBSTMOD	COMPLEX	COVER1	COVER2	COVER3	CORAL
W	R						Macroalgae	PERCE
103	1 Mound	CaCO3 Rock		Med	CCA	Coral		Sparse
103	2 Mound; Plain	Sand	Scattered	Low	Sand	CaCO3 Rock		Sparse
103	3 Plain	Sand	boulders Scattered	Low	Sand	CaCO3 Rock		None
			boulders					
103	4 Plain; Mound	Sand	Ripples Overhangs	Low	Sand	CaCO3 Rock	Macroalgae	Sparse Moderat
103	5 Mound	CaCO3 Rock		Med	CCA	Coral		
103	6 Mound	CaCO3 Rock	Overhangs	Med	CCA	Coral	Macroalgae	Moderat
103							Macroalgae	
	7 Mound	CaCO3 Rock	Overhangs	Med	CCA	Coral		Moderat
			Overhangs	Med Med			Coral Macroalgae	
103	8 Mound; Plain	CaCO3 Rock			CCA	Sand		Sparse Moderat
103	9 Mound	CaCO3 Rock			CCA	Coral		
								e
103	10 Mound	CaCO3 Rock			CCA	Coral	Macroalgae	Sparse
103	11 Mound	CaCO3 Rock			CCA	Coral	Macroalgae	Moderat
								e
103	12 Mound	CaCO3 Rock			CCA	Coral	Macroalgae	Moderat
								e
103	13 Mound	CaCO3 Rock		Med	CCA	Coral	Macroalgae	Sparse
103	14 Mound-Channel	CaCO3 Rock		Med	CCA	Coral	Macroalgae	Sparse
103	15 Mound	CaCO3 Rock		Med	CCA	Coral	Macroalgae	Sparse
103	16 Plain	Sand		Low	Sand			None
103	17 Plain	Sand	Ripples	Low	Sand			None
103	18 Plain	Sand	Ripples;	Low	Sand	CaCO3 Rock		None
			Scattered					
			boulders					
103	19 Plain	Sand	Ripples	Low	Sand			None
103	20 Plain; Mound	Sand	Ripples;	Low	Sand	CaCO3 Rock		None
			Scattered					
			boulders					
103	21 Mound	CaCO3 Rock		Med	CCA	Coral	Macroalgae	Sparse
103	22 Mound	CaCO3 Rock		Med	CCA	Soft Coral	Coral	Sparse
103	23 Mound	CaCO3 Rock	Overhangs	High	CCA	Coral	Macroalgae	Moderat
								e
103	24 Mound	CaCO3 Rock		High	CCA	Coral	Macroalgae	Sparse
104	1 Mound	CaCO3 Rock		Low	CaCO 3			Unknow
					Rock			n
104	2 Mound	CaCO3 Rock	Sand	Low	CaCO 3	Sand		Unknow
			depression		Rock			
104	3 Mound	CaCO3 Rock		Low	CCA	Coral		Sparse
104	4 Mound	CaCO3 Rock		Med	CCA	Coral		Sparse
104	5 Mound	CaCO3 Rock		Med	CCA	Coral		Sparse
104	6 Mound	CaCO3 Rock		Low	CCA	Coral		Unknow

TO	F STRUCTURE	SUBSTR	SUBSTMOD	COMPLEX	COVER1	COVER2	COVER3	CORAL
W	R							PERCE
105	7 Plain	CaCO3 Rock;	Patch Reef;	Med	CCA	Sand	Macroalgae	Sparse
105	8 Plain	Sand	Ripples	Low	Sand	CaCO3 Rock		None
		Sand	Ripples;					
			Scattered					
105	9 Plain	Sand	boulders Ripples;	Low	Sand	CaCO3 Rock		None
			Scattered					
105	10 Mound	CaCO3 Rock	boulders		CCA	Macroalgae		Unknow
				Med			Sand	
								n
105	11 Mound	CaCO3 Rock		Med	CCA	Macroalgae	Coral	Sparse
105	12 Mound; Plain	CaCO3 Rock;		Med	CaCO3	Sand		Unknow
105	13 Plain	Sand		Low	Rock	CaCO3 Rock		$\stackrel{\mathrm{n}}{\mathrm{N}}$ one
		Sand	Scattered		Sand			
			boulders;					
			Ripples					
105	14 Plain	Sand	Ripples	Low	Sand			None
105	15 Plain	Sand	Ripples	Low	Sand			None
105	16 Plain	Sand	Ripples;	Low	Sand	CaCO3 Rock		None
			Scattered					
			boulders					
105	17 Plain	Sand	Ripples	Low	Sand			None
105	18 Plain; Mound	CaCO3 Rock;		Low	Sand	CaCO3 Rock		None
105	19 Plain	Sand		Low	Sand	CaCO3 Rock		None
		Sand	Scattered					
			boulders;					
105	20 Plain	Sand	Ripples	Low	Sand	CaCO3 Rock		None
			Scattered					
			boulders;					
105	21 Plain	Sand	Ripples Scattered	Low	Sand	CaCO3 Rock		None
			boulders;					
106	1 Mound	CaCO3 Rock	Ripples	Med	CCA	Macroalgae		Unknow
								n
106	2 Mound	CaCO3 Rock		Med	CCA	Macroalgae		None
106	3 Mound	CaCO3 Rock		Med	CCA	Macroalgae	Coral	Sparse
106	4 Mound	CaCO3 Rock		Med	CCA	Macroalgae		None
106	5 Mound	CaCO3 Rock		Med	CCA	Macroalgae		None
106	7 Mound; Plain	CaCO3 Rock;	Ripples	Low	Sand	CCA	Macroalgae	None
106	8 Plain	Sand		Low	Sand	CaCO3 Rock		
		Sand	Scattered					Unknow
			boulders;					n

TO	F STRUCTURE	SUBSTR	SUBSTMOD	COMPLEX	COVER1	COVER2	COVER3	CORAL
W	R		Ripples					PERCE
	9 Plain	Sand						
106			boulders;	Low	Sand	CaCO3 Rock		None
			Ripples					
106	10 Plain	Sand	Ripples	Low	Sand			None
106	11 Plain	Sand	Scattered	Low	Sand	CaCO3 Rock		None
			boulders;					
			Ripples					
106	12 Plain	Sand	Patch Reef;	Med	Sand	CCA	Macroalgae	None
106	13 Plain		Ripples					
		Sand	Scattered	Low	Sand	CaCO3 Rock		Unknow
			boulders;					n
			Ripples					
106	14 Mound	CaCO3 Rock		Low	CCA	Macroalgae	Coral	Sparse
106	15 Mound	CaCO3 Rock		Med	CCA	Macroalgae	Coral	Sparse
106	16 Mound; Plain	CaCO3 Rock;	Ripples	Low	Sand	CCA	Macroalgae	Sparse
		Sand						
106	17 Plain	Sand	Scattered	Low	Sand	CaCO3 Rock		None
			boulders;					
			Ripples					
106	18 Plain	Sand	Ripples	Low	Sand			None
106	19 Plain	Sand	Scattered	Low	Sand			None
			boulders;					
			Ripples					
106	20 Mound	CaCO3 Rubble		Med	CCA	MacroalgaeCCA	Sand Macroalgae	None
106	21 Plain	Sand	Scattered	Low	Sand			None
			rubble; Ripples					
106	22 Plain	Sand	Ripples	Low	Sand			None
106	23 Plain	Sand	Ripples	Low	Sand			None
106	24 Plain	Sand	Ripples	Low	Sand			None
106	25 Plain	Sand	Scattered	Low	Sand			None
			boulders;					
			Ripples					
106	26 Mound	CaCO3 Rock	Overhangs	Med	CCA	Macroalgae		None
106	27 Mound; Plain	CaCO3 Rock;	Ripples	Low	Sand	CCA	Macroalgae	None
106		Sand						
	28 Plain	Sand	Scattered	Low	Sand	CCA	Macroalgae	None
			boulders;					
			Ripples					
106	29 Plain	Sand	Ripples	Low	Sand			None
106	30 Plain	Sand	Scattered	Low	Sand	CCA	Macroalgae	None
			boulders;					
			Ripples					
106	31 Plain	Sand	Scattered	Low	Sand	CCA	Macroalgae	None

TO	F Structure	SUBSTR	SUBSTMOD	COMPLEX	COVER1	COVER2	COVER3	CORAL
W	R							PERCE
110	25 Mound	CaCO3 Rock	Slope	Med	CCA	Macroalgae	Coral	Sparse
110	26 Mound	CaCO3 Rock	Slope	Low	CCA	Macroalgae	Coral	Sparse
110	27 Mound; Plain	CaCO3 Rock;	Slope	Low	Sand	CCA	Macroalgae	Sparse
		Sand						
110	28 Mound	CaCO3 Rock	Slope	Low	CCA	Sand	Macroalgae	Sparse
110	29 Mound	CaCO3 Rock		Med	CCA	Macroalgae	Coral	Sparse
110	30 Mound	CaCO3 Rubble		Low	CCA	Sand	Macroalgae	Sparse
110	31 Mound	CaCO3 Rubble	Slope	Low	CCA	Macroalgae	Sand	Sparse
110	32 Mound	CaCO3 Rubble		Med	CCA	Macroalgae	Sand	Sparse
110	33 Plain	Sand	Infauna;	Low	Sand	CaCO3 Rock		None
			Scattered					
			boulders					
110	34 Plain	Sand	Scattered	Low	Sand	CaCO3 Rock		None
			boulders					
110	35 Plain	Sand	Scattered	Low	Sand	CaCO3 Rock		None
			boulders;					
			infauna					
110	36 Plain	Sand	Infauna	Low	Sand			None
110	37 Plain	Sand	Scattered	Low	Sand	CaCO3 Rock		None
			boulders;					
			infauna					
110	38 Plain; Mound	CaCO3 Rock;		Med	Sand	CCA	Macroalgae	Sparse
		Sand						
110	39 Plain	Sand	Infauna	Low	Sand			None
110	40 Mound	CaCO3 Rubble		Low	CCA	Macroalgae	Sand	Sparse
110	41 Plain	Sand	Infauna	Low	Sand			None
110	42 Mound	CaCO3 Rubble		Low	CCA	Macroalgae	Sand	Sparse
110	43 Mound	CaCO3 Rubble		Low	CCA	Macroalgae	Sand	Sparse
110	44 Mound	CaCO3 Rubble		Low	Sand	CCA	Macroalgae	Sparse
110	45 Plain	Sand	Scattered	Low	Sand	CCA	Macroalgae	Sparse
			boulders					
110	46 Plain	Sand	Scattered	Low	Sand	CCA	Macroalgae	Sparse
			boulders					
110	47 Plain; Mound	Sand; CaCO 3	Infauna	Low	Sand	CCA	Macroalgae	Sparse
		Rock						
110	48 Mound	CaCO3 Rock		Med	CCA	Macroalgae	Coral	Sparse
110	49 Mound	CaCO3 Rubble	Slope	Med	CCA	Macroalgae	Sand	Sparse
110	50 Plain; Mound	Sand; CaCO 3	Infauna	Low	Sand	CCA	Macroalgae	Sparse
		Rock						
110	51 Mound; Plain	CaCO3 Rubble;	Infauna	Low	Sand	CCA	Macroalgae	Sparse
		Sand						
110	52 Plain; Mound	Sand; CaCO3	Infauna	Low	Sand	CCA	Macroalgae	Sparse
		Rock						
110	53 Mound; Plain	CaCO3 Rubble;	Infauna	Low	Sand	CCA	Macroalgae	None
		Sand						
110	54 Mound	CaCO3 Rubble		Low	CCA	Macroalgae	Sand	Sparse
110	55 Mound	CaCO3 Rubble		Low	CCA	Macroalgae	Sand	Sparse

TO	F STRUCTURE	SUBSTR	SUBSTMOD	COMPLEX	COVER1	COVER2	COVER3	CORAL
W	R							PERCE
110	56 Mound; Plain	CaCO3 Rubble;	Slope	Low	Sand	CCA	Macroalgae	Sparse
110	57 Plain	Sand		Low	Sand	CaCO3 Rock		None
		Sand	Ripples;					
			Scattered					
			boulders					
110	58 Plain; Mound	CaCO3 Rubble;		Low	CCA	Sand	Macroalgae	Sparse
110	59 Plain	Sand		Low	Sand	CCA	Macroalgae	Sparse
		Sand	Infauna;					
			Scattered					
			boulders					
110	60 Mound	CaCO3 Rubble		Low	CCA	Macroalgae	Sand	Sparse
110	61 Mound	CaCO3 Rubble		Low	CCA	Sand	Macroalgae	Sparse
110	62 Mound	CaCO3 Rubble	Slope	Low	CCA	Sand	Macroalgae	Sparse
110	63 Mound	CaCO3 Rubble		Low	CCA	Macroalgae	Sand	Sparse
110	64 Mound	CaCO3 Boulders	Slope	Low	CCA	Macroalgae	Sand	Sparse
110	65 Mound	CaCO 3 Boulders	Slope	Low	CCA	Macroalgae	Sand	Sparse
110	66 Mound	CaCO3 Boulders	Slope	Med	CCA	Macroalgae	Sand	Sparse
110	67 Mound	CaCO3 Boulders	Slope	Med	CCA	Macroalgae	Sand	Sparse
110	68 Mound	CaCO3 Rubble	Slope	Low	CCA	Macroalgae	Sand	Sparse
110	69 Mound	CaCO3 Rubble	Slope	Low	CCA	Macroalgae	Sand	Sparse
110	70 Mound	CaCO3 Rubble	Slope	Low	CCA	Macroalgae	Coral	Sparse
110	71 Mound	CaCO3 Rubble		Low	CCA	Macroalgae	Sand	Sparse
110	72 Plain	Sand	Infauna;	Low	Sand	CaCO3 Rock		None
			Scattered					
			boulders					
110110	73 Plain	Sand	Infauna;	Low	Sand	CaCO3 Rock		None
			Scattered					
			boulders;					
			Ripples Ripples;					
110	75 Plain		Infauna					
		Sand	Ripples;	Low	Sand			None
			Infauna					
110	76 Mound	CaCO3 Rubble		Low	CCA	Sand	Macroalgae	Sparse
110	77 Plain	Sand	Ripples;	Low	Sand			None
	78 Plain		Infauna					
110		Sand	Infauna;	Low	Sand	CCA	Macroalgae	None
			Scattered					
			boulders					
110	79 Mound	CaCO3 Rubble		Low	CCA	Macroalgae		None
110	80 Plain	Sand	Scattered	Low	Sand	CaCO3 Rock		None
			boulders;					
			infauna					
110	81 Plain	Sand	Ripples;	Low	Sand	CaCO3 Rock		None
			Infauna;					

| TO | F STRUCTURE | SUBSTR | SUBSTMOD | COMPLEX | COVER1 | COVER2 | COVER3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | CORAL

TO	F STRUCTURE	SUBSTR	SUBSTMOD	COMPLEX	COVER1	COVER2	COVER3	CORAL
W	R							PERCE
112	1 Plain	Sand	Infauna	Low	Sand			None
112	2 Plain	Sand	Infauna	Low	Sand			None
112	3 Plain	Sand	Infauna	Low	Sand			None
112	4 Plain	Sand	Infauna	Low	Sand			None
112	5 Plain	Sand	Infauna	Low	Sand			None
112	6 Mound; Plain	CaCO3 Rock;		Med	Sand	CCA	Coral	Sparse
		Sand						
112	7 Plain	Sand	Scattered	Low	Sand	CCA	Coral	Sparse
			boulders					
112	8 Plain	Sand	Infauna	Low	Sand			None
112	9 Plain	Sand	Infauna	Low	Sand			None
112	10 Plain	Sand	Infauna;	Low	Sand	CCA	Coral	Sparse
			Scattered					
112	11 Plain	Sand	boulders Scattered	Low	Sand	CCA	Coral	Sparse
			boulders					
112	12 Plain	Sand	Sand	Low	Sand	CCA	Coral	Sparse
112	13 Plain; Mound	Sand; CaCO3	Infauna	Low	Sand	CCA	Coral	Sparse
		Rock						
112	14 Plain	Sand	Infauna;	Low	Sand	CaCO3 Rock		Unknow
			Scattered					n
			boulders					
112	15 Plain; Mound	Sand; CaCO 3	Infauna	Low	Sand	CCA	Coral	Sparse
		Rock						
112	16 Plain	Sand	Infauna;	Low	Sand	CCA	Coral	Sparse
			Scattered					
			boulders					
112	17 Plain	Sand	Infauna;	Low	Sand	CCA	Coral	Sparse
			Scattered					
			boulders					
112	18 Plain	Sand	Infauna;	Low	Sand	CaCO3 Rock		Unknow
			Scattered					n
			boulders					
113	1 Mound	CaCO3 Rock		Low	CCA	Sand	Coral	Sparse
113	2 Patch Reefs	CaCO3 Rock;	Ripples	Med	Sand	CCA	Coral	Sparse
		Sand						
113	3 Patch Reefs	CaCO3 Rock;	Ripples	Med	Sand	CCA	Coral	Sparse
		Sand						
113	4 Patch Reefs	CaCO3 Rock;	Ripples	Med	Sand	CCA	Coral	Sparse
		Sand						
113	5 Plain	Sand	Ripples	Low	Sand			None
113	6 Plain	Sand	Ripples;	Low	Sand	CaCO3 Rock		Unknow
			Adjacent Reef					
113	7 Patch Reefs	CaCO3 Rock		High	CCA	Coral	Macroalgae	Sparse

TO	F Structure	SUBSTR	SUBSTMOD	COMPLEX	COVER1	COVER2	COVER3	CORAL
W								PERCE
113	8 Patch Reefs	Sand; CaCO3	Ripples	Med	Sand	CCA	Coral	Sparse
		Rock						
113	9 Patch Reefs	Sand; CaCO3	Ripples	Med	Sand	CCA	Coral	Sparse
		Rock						
113	10 Plain	Sand	Ripples;	Low	Sand	CaCO3 Rock		None
113	11 Plain	Sand	Adjacent Reef Ripples;	Low	Sand	CaCO3 Rock		Sparse
113	12 Patch Reefs	CaCO3 Rock;	Adjacent Reef Ripples	Med	CCA	Sand	Coral	Sparse
		Sand						
113	13 Patch Reefs	CaCO3 Rock;	Ripples	Med	CCA	Sand	Coral	Sparse
		Sand						
113	14 Plain	Sand	Ripples	Low	Sand			None
113	15 Patch Reefs	Sand; CaCO3	Ripples	Med	Sand	CCA	Coral	Sparse
		Rock						
113	16 Patch Reefs	Sand; CaCO3	Ripples	Med	Sand	CCA	Coral	Sparse
		Rock						
113	17 Patch Reefs	Sand; CaCO3	Ripples	Med	Sand	CCA	Coral	Sparse
		Rock						
113	18 Mound	CaCO3 Rock		Med	CCA	Coral	Sand	Sparse
113	19 Patch Reefs	Sand; CaCO3	Ripples	Med	Sand	CCA	Coral	Sparse
		Rock						
113	20 Patch Reefs	Sand; CaCO3	Ripples	High	Sand	CCA	Coral	Sparse
		Rock						
113	21 Patch Reefs	Sand; CaCO3	Ripples	Med	Sand	CCA	Coral	Sparse
		Rock						
113	22 Patch Reefs	Sand; CaCO3	Ripples	Med	Sand	CCA	Coral	Sparse
		Rock						
113	23 Patch Reefs	Sand; CaCO3	Ripples	Med	Sand	CCA	Coral	None
		Rock						
113	24 Patch Reefs	Sand; CaCO3	Ripples	Med	Sand	CCA	Coral	Sparse
		Rock						
113	25 Mound	CaCO3 Rock		Low	CCA	Sand	Coral	Sparse
113	26 Patch Reefs	Sand; CaCO3	Ripples	Med	Sand	CCA	Coral	Sparse
		Rock						
114	1	Sand	Infauna	Low	Sand		None	
114	2 Plain	Sand	Infauna	Low	Sand			
114	3 Plain	Sand	Infauna	Low	Sand			
114	4 Plain	Sand	Infauna;	Low	Sand	CCA	Macroalgae	
			Adjacent Reef					
114	5 Mound	CaCO3 Rock	Overhangs	Med	CCA	Macroalgae	Sand	
114	6 Plain	Sand	Infauna;	Low	Sand	Macroalgae		
114	7 Plain	Sand	Adjacent Reef Infauna;	Low	Sand	Macroalgae		
			Scattered					

Table A-05. Ranges used for LFH calculations.

Grid	LFH0	LFH1	LFH2	LFH3
05 m	300.0	1.5	0.25	0.35
10 m	300.0	1.5	0.25	0.35
20 m	300.0	2.5	0.50	0.50

Table A-06. LFH class prototypes from 10 random training samples (comma separated form).
ClassRand10,row,E,N,LFH0_0,LFH0_1,LFH0_2,LFH0_3,LFH0_4,LFH0_5,LFH0_6,LFH0_7,LFH1_0,LFH1_1,LF
H1_2,LFH1_3,LFH1_4,LFH1_5,LFH1_6,LFH1_7,LFH2_0,LFH2_1,LFH2_2,LFH2_3,LFH2_4,LFH2_5,LFH2_6,L
FH2_7,LFH3_0,LFH3_1,LFH3_2,LFH3_3,LFH3_4,LFH3_5,LFH3_6,LFH3_7
1,,.,.,., ,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0
2,69,358593.8,1681714,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0.91,0.09,0,0,0,0,0,0,1,0,0,0,0,0,0,0
3,73,359793.8,1682714,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0.54,0.36,0.1,0,0,0,0,0,0.85,0.15,0,0,0,0,0,0
4,83,360693.8,1683514,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0.68,0.28,0.03,0.01,0,0,0,0,0.81,0.18,0.01,0,0,0,0,0
5,52,356693.8,1680114,1,0,0,0,0,0,0,0,0.53,0.47,0,0,0,0,0,0,0.69,0.26,0.05,0,0,0,0,0,0.78,0.22,0,0,0,0,0,0
$6,86,356093.8,1684014,0.02,0.98,0,0,0,0,0,0,0.37,0.41,0.2,0.02,0,0,0,0,0.1,0.31,0.16,0.26,0.1,0.05,0.01,0.01,0.41,0$.
$43,0.15,0.01,0,0,0,0$
$7,57,352993.8,1680614,1,0,0,0,0,0,0,0,0.32,0.5,0.17,0.01,0,0,0,0,0.12,0.3,0.31,0.12,0.09,0.03,0.01,0.02,0.47,0.44,0$.
$09,0,0,0,0,0$
$8,26,357493.8,1677814,0,1,0,0,0,0,0,0,0.31,0.33,0.25,0.11,0,0,0,0,0.03,0.15,0.16,0.2,0.11,0.1,0.12,0.13,0.24,0.36,0$.
$25,0.1,0.04,0,0,0.01$
$9,51,353793.8,1680014,0,1,0,0,0,0,0,0,0.07,0.12,0.26,0.49,0.06,0,0,0,0.2,0.28,0.35,0.08,0.05,0.04,0,0,0.14,0.33,0.2$
$6,0.18,0.06,0.03,0,0$
$10,0,358493.8,1672114,0,0,1,0,0,0,0,0,0,0,0.02,0.63,0.32,0.03,0,0,0.07,0.12,0.23,0.2,0.16,0.05,0.07,0.1,0.01,0.16,0$.
$19,0.2,0.19,0.08,0.08,0.09$
$11,17,351793.8,1676714,0,0,0,0,0.09,0.91,0,0,0,0,0,0,0,0.03,0.08,0.89,0.01,0.03,0.06,0.05,0.14,0.05,0.03,0.63,0.01$,
$0.02,0.06,0.03,0.07,0.15,0.06,0.6$

Table A-07. LFH class prototypes from video ground-truth (vgt) training samples. Mean LFH feature vectors for each level of the video data variable substrate (SUBSTR) (comma separated format).

SUBSTR,NumRows,LFH0_0,LFH0_1,LFH0_2,LFH0_3,LFH0_4,LFH0_5,LFH0_6,LFH0_7,LFH1_0,LFH1_1,LFH 1_2,LFH1_3,LFH1_4,LFH1_5,LFH1_6,LFH1_7,LFH2_0,LFH2_1,LFH2_2,LFH2_3,LFH2_4,LFH2_5,LFH2_6,LF H2_7,LFH3_0,LFH3_1,LFH3_2,LFH3_3,LFH3_4,LFH3_5,LFH3_6,LFH3_7 CaCO3 Boulders, $5,1,0,0,0,0,0,0,0,0.218,0.424,0.322,0.036,0,0,0,0,0.348,0.326,0.172,0.084,0.044,0.012,0.014,0,0.34,0.53,0.13,0,0,0$, 0,0

CaCO3 Rock,
$79,0.975569620253165,0.0244303797468354,0,0,0,0,0,0,0.567435443037974,0.255935443037975,0.10371772151$ $8987,0.0429113924050633,0.0241772151898734,0.00582278481012658,0,0,0.356424050632912,0.290059493670$ $886,0.172150632911392,0.0919924050632911,0.0577810126582279,0.0209329113924051,0.00635569620253165$, $0.00430379746835443,0.626824050632911,0.25896582278481,0.0777012658227848,0.0297873417721519,0.005$ 83670886075949,0.000886075949367089,0,0

CaCO3 Rock and Sand,
$20,1,0,0,0,0,0,0,0,0.8465,0.1135,0.0365,0.0035,0,0,0,0,0.4885,0.2855,0.123,0.0575,0.03,0.012,0.003,0.0005,0.785$,
0.1875,0.027,0.0005,0,0,0,0

CaCO3 Rubble,
$61,1,0,0,0,0,0,0,0,0.532777049180328,0.325747540983607,0.12,0.0191803278688525,0.00229508196721312,0,0$, $0,0.371993442622951,0.314219672131148,0.176234426229508,0.071316393442623,0.0388573770491803,0.0139$ $344262295082,0.010655737704918,0.00278688524590164,0.623422950819672,0.3269,0.0445950819672131,0.00$ $39344262295082,0.00114754098360656,0,0,0$

CaCO3 Rubble and Sand, 6,1,0,0,0,0,0,0,0,0.498333333333333,0.32,0.133333333333333,0.0483333333333333,0,0,0,0,0.153333333333333, $0.278333333333333,0.268333333333333,0.151666666666667,0.085,0.045,0.015,0.00333333333333333,0.54,0.37$
$3333333333333,0.08,0.0066666666666667,0,0,0,0$
Sand,
$178,0.957752808988764,0.042247191011236,0,0,0,0,0,0,0.757729213483146,0.140466292134831,0.07149438202$ $24719,0.0236247191011236,0.00595505617977528,0.000730337078651685,0,0,0.533194382022472,0.242164044$ $94382,0.11381797752809,0.0571393258426966,0.0346601123595505,0.0121898876404494,0.0048842696629213$ $5,0.00194887640449438,0.754615168539325,0.187206741573034,0.0454696629213483,0.00940337078651685,0$. $0030247191011236,0.000280898876404494,0,0$

Sand and CaCO3 Rock,
$23,1,0,0,0,0,0,0,0,0.839130434782609,0.118260869565217,0.0404347826086957,0.00217391304347826,0,0,0,0,0$. $349565217391304,0.355652173913043,0.17,0.0656521739130435,0.0356521739130435,0.0173913043478261,0.0$ $0521739130434783,0.000869565217391304,0.675217391304348,0.292173913043478,0.03,0.00217391304347826$,0.000434782608695652,0,0,0

Table A-08. Training samples from combined set of random, arbitrary, and video ground-truth (vgt) data.

Set,Name,E,N
General,zero,.,.
Random,Rand01,358593.8,1681714
Random,Rand02,359793.8,1682714
Random,Rand03,360693.8,1683514
Random,Rand04,356693.8,1680114
Random,Rand05,356093.8,1684014
Random,Rand06,352993.8,1680614
Random,Rand07,357493.8,1677814
Random,Rand08,353793.8,1680014
Random,Rand09,358493.8,1672114
Random,Rand10,351793.8,1676714
Arbitrary,ArbReef1,357500.2814914,1679920.4613487
Arbitrary,ArbReef2,357027.48146701,1680473.2736849
Arbitrary,ArbX01,357145.02682692,1679036.2525646
Arbitrary,ArbX02,358062.1133973,1678715.0395019
Arbitrary,ArbX03,357093.8,1677814
Arbitrary,ArbX04,356172.07711519,1679213.1525122
Arbitrary,BroadReefTop,352570.14122744,1678713.6955527
Arbitrary,BroadReefTop,352798.31669693,1679347.5163012
Arbitrary,ChannelBottomNoisy,357893.8,1684114
Arbitrary,ChannelBottomNoisy,357893.8,1684014
Arbitrary,DeepChannelBank,356693.8,1682514
Arbitrary,DeepChannelBank,356793.8,1683314

Arbitrary,DeepChannelBank,356993.8,1680814
Arbitrary,DeepChannelBottom,356293.8,1680914
Arbitrary,DeepChannelBottom,356493.8,1681214
Arbitrary,DredgedChannel,360895.06324139,1683996.7310255
Arbitrary,DredgedChannel,360763.12166466,1683989.1915068
Arbitrary,DredgedChannel,360974.22818743,1683992.9612661
Arbitrary,Heterogeneous,358869.64620034,1682150.1786384
Arbitrary,LargeMoundTop,359078.70618821,1680618.7506155
Arbitrary,MoundsCommon,359225.92884195,1678975.7341615
Arbitrary,MoundsCommon,359090.92625038,1679278.3261771
Arbitrary,MoundsCommon,359300.41303041,1678789.5236904
Arbitrary,NEhighfreqrough,359779.21447816,1683548.1296646
Arbitrary,NElargelumps,360529.39658587,1683751.6966687
Arbitrary,Ngradualslope,356093.8,1684414
Arbitrary,PeakReef,358583.50271651,1679129.3578002
Arbitrary,ReefBorderedSediment,353151.35485389,1680011.5576231
Arbitrary,ReefEdgeW,351979.54198335,1680390.5013017
Arbitrary,ReefRidgeSE,358932.6473499,1679045.5630882
Arbitrary,ReefRidgeSE,358634.71059607,1679445.9156012
Arbitrary,ReefRidgeSE,358718.50530809,1679217.807774
Arbitrary,ReefRidgeSE,359235.23936551,1678612.6237428
Arbitrary,SmoothSedimented,359140.61724677,1682354.623859
Arbitrary,SmoothSedimented,356451.3928219,1678831.4210464
Arbitrary,SpurGrooveLike,355764.42078613,1684467.9509424
Video,CaCO3 Rock,356972.033,1679260.21
Video,Sand,356972.089,1679269.44
Video,Sand,356972.157,1679280.5

Video,Sand,356972.213,1679289.72
Video,CaCO3 Rock,356970.442,1679298.95
Video,CaCO3 Rock,356970.499,1679308.17

Video,CaCO3 Rock,356970.544,1679315.54
Video,CaCO3 Rock,356970.6,1679324.77
Video,CaCO3 Rock,356970.667,1679335.83
Video,CaCO3 Rock,356970.712,1679343.2

Video,CaCO3 Rock,356970.779,1679354.26
Video,CaCO3 Rock,356968.986,1679359.8

Video,CaCO3 Rock,356970.869,1679369.02

Video,CaCO3 Rock,356967.38,1679378.26
Video,CaCO3 Rock,356967.436,1679387.47
Video,Sand,356965.654,1679394.86

Video,Sand,356963.884,1679404.09

Video,Sand,356963.94,1679413.32
Video,Sand,356962.277,1679422.54

Video,Sand,356960.507,1679431.77
Video,CaCO3 Rock,356958.737,1679441.01
Video,CaCO3 Rock,356957.063,1679448.39

Video,CaCO3 Rock,356957.119,1679457.61

Video,CaCO3 Rock,356955.348,1679466.84
Video,CaCO3 Rock,358681.925,1679231.43
Video,CaCO3 Rock,358683.707,1679224.04

Video,CaCO3 Rock,358683.651,1679214.83
Video,CaCO3 Rock,358685.445,1679209.28
Video,CaCO3 Rock,358683.563,1679200.07

Video,CaCO3 Rock,358685.334,1679190.84

Video,CaCO3 Rock,358683.452,1679181.64
Video,CaCO3 Rock,358685.234,1679174.25

Video,Sand,358683.374,1679168.73
Video,CaCO3 Rock,358683.33,1679161.35
Video,CaCO3 Rock,358685.123,1679155.8
Video,CaCO3 Rock,358685.09,1679150.27
Video,Sand,358685.034,1679141.06

Video,Sand,358686.709,1679133.67
Video,CaCO3 Rock,358684.957,1679128.15

Video,Sand,358686.642,1679122.61

Video,Sand,358686.598,1679115.24
Video,Sand,358686.565,1679109.71
Video,Sand,358688.358,1679104.16
Video,CaCO3 Rock,358686.498,1679098.64
Video,CaCO3 Rock,358686.46,1679092.19
Video,Sand,358686.421,1679085.73
Video,CaCO3 Rock; Sand,358686.387,1679080.2

Video,Sand,358686.354,1679074.67
Video,Sand,358686.321,1679069.14

Video,Sand,358686.287,1679063.61
Video,Sand,358686.254,1679058.07
Video,Sand,358686.21,1679050.7
Video,Sand; CaCO3 Rock,358688.003,1679045.15

Video,CaCO3 Rock,358687.97,1679039.62
Video,Sand; CaCO3 Rock,358686.099,1679032.26
Video,Sand,358961.994,1679941.5

Video,Sand,358965.495,1679934.1

Video,CaCO3 Rock,358969.093,1679924.86
Video,CaCO3 Rock,358970.756,1679915.64

Video,Sand,358972.527,1679906.4

Video,Sand,358972.472,1679897.18
Video,CaCO3 Rock; Sand,358972.417,1679887.97
Video,Sand,358970.535,1679878.75
Video,Sand,358968.75,1679867.7
Video,CaCO3 Rock,358966.868,1679858.5
Video,CaCO3 Rock,358964.975,1679847.44
Video,CaCO3 Rock; Sand,358961.374,1679838.25

Video,Sand,358959.503,1679830.88
Video,Sand,358955.903,1679821.69
Video,Sand,358952.313,1679814.33
Video,Sand,358948.594,1679803.29
Video,Sand,358946.819,1679794.08
Video,CaCO3 Rock; Sand,358943.122,1679786.73
Video,Sand,358939.521,1679777.53
Video,Sand,358935.921,1679768.33
Video,Sand,358930.505,1679760.99

Video,CaCO3 Rock,358393.619,1680116.41

Video,CaCO3 Rock,358395.434,1680114.55
Video,CaCO3 Rock,358397.153,1680114.54
Video,CaCO3 Rock,358398.98,1680114.53

Video,CaCO3 Rock,358398.98,1680114.53

Video,CaCO3 Rock; Sand,358402.514,1680112.67
Video,Sand,358404.34,1680112.66
Video,Sand,358402.514,1680112.67

Video,Sand,358406.156,1680110.8
Video,Sand,358406.167,1680112.65

Video,Sand,358407.886,1680112.64

Video,Sand,358413.268,1680114.44
Video,CaCO3 Rock,358418.651,1680116.26
Video,CaCO3 Rock,358425.872,1680119.9
Video,CaCO3 Rock; Sand,358434.811,1680123.54

Video,Sand,358440.194,1680125.34
Video,Sand,358447.403,1680127.15
Video,Sand,358452.786,1680128.96

Video,CaCO3 Rubble,358458.158,1680128.93
Video,Sand,358465.367,1680130.72
Video,Sand,358470.75,1680132.54
Video,Sand,358476.133,1680134.35

Video,Sand,358481.505,1680134.32
Video,Sand,358486.887,1680136.13

Video,CaCO3 Rock,358493.978,1680136.08
Video,CaCO3 Rock; Sand,358499.35,1680136.05
Video,Sand,358502.992,1680134.19

Video,Sand,358508.363,1680134.16
Video,Sand,358513.735,1680134.13
Video,Sand,358517.28,1680134.11
Video,Sand,358522.652,1680134.07

Video,Sand,358528.013,1680132.19

Video,Sand,358531.558,1680132.17
Video,Sand,358535.2,1680130.3

Video,Sand,358538.745,1680130.28

Video,Sand,359006.054,1681606.3
Video,Sand,359002.39,1681604.48

Video,Sand,358998.834,1681602.66
Video,Sand,358995.267,1681598.99
Video,Sand,358991.592,1681595.33
Video,Sand,358986.21,1681593.51
Video,Sand,358984.457,1681587.99
Video,Sand,358979.075,1681586.19
Video,Sand,358973.67,1681580.69
Video,Sand,358968.266,1681575.19
Video,Sand,358966.395,1681567.82
Video,Sand,358962.795,1681558.62
Video,Sand,358960.913,1681549.41
Video,Sand,358957.323,1681542.06
Video,Sand,358948.144,1681516.29
Video,Sand,358944.555,1681508.95

Video,Sand,358940.954,1681499.74
Video,CaCO3 Rubble; Sand,358939.083,1681492.39
Video,CaCO3 Rubble,358935.483,1681483.18

Video,CaCO3 Rubble,358933.601,1681473.98
Video,CaCO3 Rubble,358930.012,1681466.62
Video,CaCO3 Rubble,358928.141,1681459.26
Video,CaCO3 Rubble,358924.54,1681450.05

Video,Sand,358922.659,1681440.85
Video,Sand,358920.788,1681433.48
Video,CaCO3 Rubble,358917.187,1681424.29

Video,Sand,358911.761,1681415.1

Video,Sand,358909.879,1681405.89
Video,Sand,358904.452,1681396.71
Video,Sand,358899.025,1681387.52
Video,Sand,358895.424,1681378.32
Video,Sand,358889.998,1681369.13
Video,Sand,358875.543,1681341.56
Video,Sand,358870.116,1681332.38
Video,CaCO3 Rubble,359462.922,1679859.21
Video,CaCO3 Rubble,359455.69,1679853.72

Video,Sand,359446.74,1679848.24
Video,CaCO3 Rubble,359441.335,1679842.74
Video,CaCO3 Rubble,359435.93,1679837.24

Video,CaCO3 Rubble,359428.688,1679829.92
Video,CaCO3 Rubble,359421.467,1679826.26

Video,CaCO3 Rubble,359416.052,1679818.93
Video,CaCO3 Rubble,359410.636,1679811.58
Video,CaCO3 Rubble,359405.209,1679802.4

Video,CaCO3 Rubble,359401.619,1679795.04
Video,CaCO3 Rubble,359396.192,1679785.86

Video,CaCO3 Rubble,359390.765,1679776.66

Video,CaCO3 Rubble,359385.36,1679771.16
Video,CaCO3 Rubble,359374.473,1679747.26
Video,CaCO3 Rubble,359370.883,1679739.91
Video,CaCO3 Rubble,359363.52,1679712.29
Video,CaCO3 Rubble,359359.93,1679704.93
Video,CaCO3 Rubble,359356.233,1679697.59

Video,CaCO3 Rubble,359352.621,1679686.54

Video,CaCO3 Rock,359349.032,1679679.19
Video,CaCO3 Rubble,359345.324,1679669.99

Video,CaCO3 Rock,359341.734,1679662.64

Video,CaCO3 Rock; Sand,359339.875,1679657.12
Video,Sand; CaCO3 Rock,359336.285,1679649.76
Video,CaCO3 Rock,359334.403,1679640.55
Video,Sand,359330.803,1679631.36
Video,CaCO3 Rock,357464.829,1680509.25
Video,CaCO3 Rock; Sand,357473.865,1680511.05
Video,Sand,357482.793,1680512.83
Video,CaCO3 Rock,357491.721,1680514.62
Video,CaCO3 Rock,357502.475,1680516.41
Video,CaCO3 Rock,357513.23,1680518.18
Video,CaCO3 Rock,357523.973,1680518.11
Video,CaCO3 Rock,357534.728,1680519.89
Video,Sand; CaCO3 Rock,357545.471,1680519.83

Video,CaCO3 Rock,357556.226,1680521.61
Video,Sand,357566.969,1680521.54
Video,Sand,357579.55,1680523.3

Video,Sand,357590.305,1680525.09

Video,Sand,357602.885,1680526.86

Video,Sand,357613.64,1680528.63
Video,CaCO3 Rock,357624.406,1680532.26
Video,Sand,357636.89,1680535.87

Video,Sand,357645.948,1680541.35
Video,Sand,357656.736,1680548.66

Video,Sand,357671.07,1680555.94

Video,CaCO3 Rubble,357685.403,1680563.23
Video,CaCO3 Rubble,357698.006,1680568.69

Video,Sand,357708.805,1680577.84
Video,CaCO3 Rock,357719.582,1680583.31
Video,CaCO3 Rock,357730.37,1680590.62
Video,CaCO3 Rock,357741.147,1680596.09
Video,CaCO3 Rock; Sand,357751.924,1680601.55
Video,CaCO3 Rock,357760.886,1680608.88
Video,CaCO3 Rock,357769.944,1680614.36

Video,CaCO3 Rubble,357778.894,1680619.83

Video,CaCO3 Rubble,357789.671,1680625.3
Video,CaCO3 Rubble,357800.448,1680630.77
Video,Sand,357809.409,1680638.08
Video,Sand,357820.186,1680643.55

Video,Sand,357830.952,1680647.18
Video,Sand,357840.01,1680652.65
Video,Sand,357850.775,1680656.27
Video,CaCO3 Rock; Sand,357859.726,1680661.75
Video,Sand,357872.317,1680665.36

Video,CaCO3 Rubble,357883.072,1680667.14

Video,Sand,357892.011,1680670.77

Video,CaCO3 Rubble,357902.777,1680674.4
Video,CaCO3 Rubble,357911.694,1680674.35

Video,CaCO3 Rubble,357920.74,1680677.98

Video,Sand,357931.495,1680679.76
Video,Sand,357942.249,1680681.53

Video,Sand; CaCO3 Rock,357951.177,1680683.32

Video,CaCO3 Rock,357960.105,1680685.12
Video,CaCO3 Rubble,357967.314,1680686.91

Video,Sand; CaCO3 Rock,357976.243,1680688.7

Video,CaCO3 Rubble; Sand,357985.267,1680688.65
Video,Sand; CaCO3 Rock,357997.729,1680688.57
Video,CaCO3 Rubble; Sand,358010.299,1680688.5
Video,CaCO3 Rubble,358021.053,1680690.28

Video,CaCO3 Rubble,358029.97,1680690.23
Video,CaCO3 Rubble; Sand,358038.983,1680688.32

Video,Sand,358047.9,1680688.27
Video,CaCO3 Rubble; Sand,358053.261,1680686.39
Video,Sand,358060.459,1680686.35
Video,CaCO3 Rubble,358064.015,1680688.17
Video,CaCO3 Rubble,358069.387,1680688.14

Video,CaCO3 Rubble,358074.758,1680688.11
Video,CaCO3 Rubble,358080.13,1680688.08

Video,CaCO3 Boulders,358085.501,1680688.04
Video,CaCO3 Boulders,358090.884,1680689.86
Video,CaCO3 Boulders,358098.071,1680687.97

Video,CaCO3 Boulders,358108.814,1680687.9

Video,CaCO3 Rubble,358117.731,1680687.85

Video,CaCO3 Rubble,358128.452,1680684.1
Video,CaCO3 Rubble,358142.696,1680676.63

Video,CaCO3 Rubble,358155.21,1680667.34
Video,Sand,358167.735,1680659.89
Video,Sand,358180.164,1680654.28

Video,Sand,358196.223,1680644.97

Video,Sand,358212.293,1680637.49
Video,CaCO3 Rubble,358226.634,1680628.19

Video,Sand,358242.715,1680622.56
Video,Sand,358255.122,1680613.26
Video,CaCO3 Rubble,358269.473,1680605.8
Video,Sand,358283.706,1680596.49
Video,Sand,358296.22,1680587.2

Video,Sand,358310.464,1680579.73
Video,Sand,358322.978,1680570.44
Video,CaCO3 Rubble,358333.677,1680563
Video,Sand,358346.084,1680553.71
Video,Sand,358358.609,1680546.25
Video,CaCO3 Rubble,358369.296,1680536.97
Video,CaCO3 Rubble,358379.984,1680527.69
Video,CaCO3 Rubble,358396.032,1680516.53
Video,CaCO3 Rubble,358412.081,1680505.37

Video,CaCO3 Rubble,358428.129,1680494.21
Video,CaCO3 Boulders,358442.362,1680484.9
Video,CaCO3 Rock,358458.41,1680473.74
Video,CaCO3 Rubble,358470.924,1680464.44
Video,CaCO3 Rubble,358485.157,1680455.14
Video,CaCO3 Rubble,358497.66,1680444
Video,CaCO3 Rubble,358599.254,1679473.48
Video,CaCO3 Rubble,358595.62,1679458.75

Video,CaCO3 Rubble,358588.321,1679442.2
Video,CaCO3 Rubble; Sand,358582.85,1679425.64
Video,CaCO3 Rock,358577.378,1679409.08

Video,CaCO3 Rock; Sand,358570.08,1679392.53
Video,CaCO3 Rock; Sand,358564.608,1679375.97

Video,Sand,358555.601,1679361.26

Video,Sand; CaCO3 Rock,358548.292,1679342.87
Video,Sand,358539.297,1679330.02
Video,CaCO3 Rock,358532.01,1679315.31
Video,Sand,358526.549,1679300.59

Video,Sand,358521.11,1679289.55
Video,Sand,358515.65,1679274.84

Video,Sand,358512.015,1679260.12
Video,Sand,358508.403,1679249.07
Video,Sand,358506.488,1679234.33
Video,CaCO3 Rock,358504.573,1679219.59
Video,Sand,358502.765,1679204.85
Video,Sand,358502.698,1679193.79
Video,Sand,358506.166,1679180.86

Video,CaCO3 Rock; Sand,358506.099,1679169.79
Video,Sand; CaCO3 Rock,358506.021,1679156.88
Video,Sand,358505.933,1679142.14

Video,Sand,358504.017,1679127.4
Video,Sand,358502.209,1679112.65

Video,Sand,358498.457,1679096.08
Video,Sand,358496.649,1679081.34

Video,Sand,358494.733,1679066.61
Video,Sand,358489.273,1679051.88
Video,Sand,358487.357,1679037.14

Video,Sand,358483.712,1679020.57

Video,Sand,358481.796,1679005.84
Video,Sand,359458.904,1678900.4

Video,Sand,359458.805,1678883.8
Video,Sand,359455.16,1678867.23
Video,Sand,359451.526,1678852.49
Video,Sand,359444.251,1678839.64

Video,CaCO3 Rock; Sand,359438.791,1678824.91
Video,Sand,359433.33,1678810.2
Video,Sand,359426.055,1678797.33
Video,Sand,359420.594,1678782.61

Video,Sand,359413.404,1678766.06
Video,Sand,359404.302,1678753.2
Video,Sand,359398.83,1678736.64
Video,Sand; CaCO3 Rock,359389.824,1678721.95
Video,Sand,359382.538,1678707.24
Video,Sand; CaCO3 Rock,359373.532,1678692.54
Video,Sand,359364.526,1678677.85

Video,Sand,359355.424,1678664.99
Video,Sand,359348.244,1678650.28

Video,CaCO3 Rock,360132.061,1682779.67
Video,CaCO3 Rock; Sand,360126.635,1682770.48
Video,CaCO3 Rock; Sand,360123.057,1682764.97
Video,CaCO3 Rock; Sand,360115.804,1682755.8

Video,Sand,360112.204,1682746.6

Video,Sand,360108.615,1682739.24
Video,CaCO3 Rock,360103.2,1682731.9

Video,Sand; CaCO3 Rock,360099.504,1682724.55

Video,Sand; CaCO3 Rock,360094.089,1682717.2
Video,Sand,360090.5,1682709.85

Video,Sand,360085.085,1682702.51
Video,CaCO3 Rock; Sand,360081.474,1682691.47
Video,CaCO3 Rock; Sand,360079.582,1682680.42
Video,Sand,360077.689,1682669.36
Video,Sand; CaCO3 Rock,360074.089,1682660.16
Video,Sand; CaCO3 Rock,360070.478,1682649.12
Video,Sand; CaCO3 Rock,360070.412,1682638.05

Video,CaCO3 Rock,360064.975,1682627.02
Video,Sand; CaCO3 Rock,360061.268,1682617.83
Video,Sand; CaCO3 Rock,360055.831,1682606.8
Video,Sand; CaCO3 Rock,360050.393,1682595.77
Video,Sand; CaCO3 Rock,360044.956,1682584.74
Video,Sand; CaCO3 Rock,360039.519,1682573.7
Video,Sand; CaCO3 Rock,360035.908,1682562.66

Video,CaCO3 Rock,360028.645,1682551.64

Video,Sand; CaCO3 Rock,360023.218,1682542.46
Video,Sand,358377.315,1683341.54

Video,Sand,358375.456,1683336.02

Video,Sand,358373.607,1683332.35

Video,Sand,358373.585,1683328.65
Video,CaCO3 Rock,358371.844,1683324.98

Video,Sand,358368.17,1683321.32

Video,Sand,358366.429,1683317.63
Video,Sand,358362.754,1683313.97

Video,Sand,358359.198,1683312.15

Video,CaCO3 Rock,358355.631,1683308.48
Video,CaCO3 Rock,358351.978,1683308.5

Video,CaCO3 Rock,358346.607,1683308.54
Video,CaCO3 Rock,358343.063,1683308.56
Video,CaCO3 Rock,358335.854,1683306.75
Video,CaCO3 Rock,358330.483,1683306.79
Video,CaCO3 Rock,358325.101,1683304.98
Video,CaCO3 Rock,358319.73,1683305.02
Video,CaCO3 Rock,358312.64,1683305.06

Video,CaCO3 Rock,358305.454,1683306.94

Video,Sand,358298.246,1683305.15
Video,Sand,358291.167,1683307.02
Video,Sand,358283.97,1683307.07

Video,Sand,358276.784,1683308.96

Video,Sand,358267.868,1683309.01
Video,Sand,358260.671,1683309.06

Video,Sand,358253.581,1683309.1

Video,Sand,358246.395,1683310.99

Table A-09. LFH class prototypes (mean LFH feature vectors) for each class of the combined set of random, arbitrary, and video ground-truth (vgt) training samples.

ID,Source,Name,LFH 1,LFH 2,LFH 3,LFH 4,LFH 5,LFH 6,LFH 7,LFH 8,LFH 9,LFH 10,LFH 11,LFH 12,LFH
13,LFH 14,LFH 15,LFH 16,LFH 17,LFH 18,LFH 19,LFH 20,LFH 21,LFH 22,LFH 23,LFH 24,LFH 25,LFH

26,LFH 27,LFH 28,LFH 29,LFH 30,LFH 31,LFH 32
0,General,zero, $1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0$
1,Random,Rand01 (background1), 1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0.91,0.09,0,0,0,0,0,0,1,0,0,0,0,0,0,0
2,Random,Rand02 (background2), 1, 0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0.54,0.36, 0.1, $0,0,0,0,0,0.85,0.15,0,0,0,0,0,0$
3,Random,Rand03 (background3), 1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0.68,0.28,0.03,0.01,0,0,0,0,0.81,0.18,0.01,0,0,0,0,0
4,Random,Rand04 (background4), 1,0,0,0,0,0,0,0,0.53, $0.47,0,0,0,0,0,0,0.69,0.26,0.05,0,0,0,0,0,0.78,0.22,0,0,0,0,0,0$
5,Random,Rand05
(background5), $0.02,0.98,0,0,0,0,0,0,0.37,0.41,0.2,0.02,0,0,0,0,0.1,0.31,0.16,0.26,0.1,0.05,0.01,0.01,0.41,0.43,0.15$, $0.01,0,0,0,0$

6,Random,Rand06
(background6), $1,0,0,0,0,0,0,0,0.32,0.5,0.17,0.01,0,0,0,0,0.12,0.3,0.31,0.12,0.09,0.03,0.01,0.02,0.47,0.44,0.09,0,0,0$, 0,0

7,Random,Rand07
(background7), $0,1,0,0,0,0,0,0,0.31,0.33,0.25,0.11,0,0,0,0,0.03,0.15,0.16,0.2,0.11,0.1,0.12,0.13,0.24,0.36,0.25,0.1,0$.
04,0,0,0.01
8,Random,Rand08
(background 8), $0,1,0,0,0,0,0,0,0.07,0.12,0.26,0.49,0.06,0,0,0,0.2,0.28,0.35,0.08,0.05,0.04,0,0,0.14,0.33,0.26,0.18,0$.
06,0.03,0,0
9,Random,Rand09
(background9), $0,0,1,0,0,0,0,0,0,0,0.02,0.63,0.32,0.03,0,0,0.07,0.12,0.23,0.2,0.16,0.05,0.07,0.1,0.01,0.16,0.19,0.2,0$.
19,0.08,0.08,0.09
10,Random,Rand10
(DeepChannelBank),0,0,0,0,0.09,0.91,0,0,0,0,0,0,0,0.03,0.08,0.89, 0.01, 0.03, 0.06, 0.05, 0.14, 0.05, 0.03, 0.63,0.01,0.02 ,0.06,0.03,0.07,0.15,0.06,0.6

11,Arbitrary,ChannelBottomNoisy, $0,0,0,0,0,1,0,0,0.555,0.445,0,0,0,0,0,0,0.29,0.455,0.205,0.035,0.015,0,0,0,0.435$, $0.435,0.11,0.02,0,0,0,0$

12,Arbitrary,LargeSlopes, $0,0.19666667,0.80333333,0,0,0,0,0,0,0,0.22666667,0.52666667,0.12,0.08666667,0.0333$ $3333,0.00666667,0.1866667,0.27,0.17,0.10333333,0.05333333,0.03,0.03666667,0.15,0.02,0.18666667,0.34,0.216$ 66667,0.07,0.06666667,0.02333333,0.07666667

13,Arbitrary,DeepChannelBottom, $0,0,0,0,0,1,0,0,0.5,0.32,0.175,0.005,0,0,0,0,0.58,0.26,0.115,0.03,0.01,0,0,0.005,0$.
$54,0.25,0.095,0.085,0.025,0.005,0,0$
14,Arbitrary,DredgedChannel,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0.81,0.18333333,0.00666667,0,0,0,0,0,0.97666667,0.0 2333333,0,0,0,0,0,0

15,Arbitrary,Heterogeneous, $1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0.72,0.28,0,0,0,0,0,0,0.99,0.01,0,0,0,0,0,0$
16,Arbitrary,MoundsCommon, 1, $0,0,0,0,0,0,0,0.9,0.1,0,0,0,0,0,0,0.45666667,0.3,0.09666667,0.06666667,0.053333$
$33,0.02666667,0,0,0.74,0.23666667,0.02,0.00333333,0,0,0,0$
17,Arbitrary,NEhighfreqrough, $1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0.29,0.34,0.31,0.06,0,0,0,0,0.51,0.44,0.05,0,0,0,0,0$
18,Arbitrary,ReefBorderedSediment, $1,0,0,0,0,0,0,0,0.87,0.09,0.04,0,0,0,0,0,0.89,0.06,0.02,0.01,0.02,0,0,0,0.83,0.14$
,0.03,0,0,0,0,0
19,Arbitrary,ReefEdgeW,0.89,0.11,0,0,0,0,0,0,0.06,0.64,0.3,0,0,0,0,0,0.14, 0.29, $0.17,0.18,0.14,0.05,0.02,0.01,0.24,0$
.47,0.22,0.07,0,0,0,0
20,Arbitrary,ReefRidgeSE, $0.9875,0,0,0,0,0,0,0,0.4275,0.4025,0.135,0.0225,0,0,0,0,0.18,0.3125,0.225,0.145,0.0775$
,0.0325,0.01,0.005,0.545,0.3825,0.0475,0.0125,0,0,0,0
21,Arbitrary,SmoothSedimented, $0.5,0.5,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0$
22,Arbitrary,SpurGrooveLike, $0,1,0,0,0,0,0,0,0.25,0.7,0.05,0,0,0,0,0,0.35,0.46,0.12,0.07,0,0,0,0,0.43,0.51,0.06,0,0,0$
,0,0
23,VideoGroundTruth, CaCO 3
Boulders, $1,0,0,0,0,0,0,0,0.218,0.424,0.322,0.036,0,0,0,0,0.348,0.326,0.172,0.084,0.044,0.012,0.014,0,0.34,0.53,0.1$
$3,0,0,0,0,0$

24,VideoGroundTruth, CaCO 3
Rock, $0.97556962,0.02443038,0,0,0,0,0,0,0.56743544,0.25593544,0.10371772,0.04291139,0.02417722,0.0058227$ 8,0,0,0.35642405,0.29005949,0.17215063,0.09199241,0.05778101,0.02093291,0.0063557,0.0043038,0.62682405, 0.25896582,0.07770127,0.02978734,0.00583671,0.00088608,0,0

25,VideoGroundTruth, CaCO3 Rock and
Sand, $1,0,0,0,0,0,0,0,0.8465,0.1135,0.0365,0.0035,0,0,0,0,0.4885,0.2855,0.123,0.0575,0.03,0.012,0.003,0.0005,0.78$
5,0.1875,0.027,0.0005,0,0,0,0
26,VideoGroundTruth,CaCO3
Rubble, $1,0,0,0,0,0,0,0,0.53277705,0.32574754,0.12,0.01918033,0.00229508,0,0,0,0.37199344,0.31421967,0.1762$
$3443,0.07131639,0.03885738,0.01393443,0.01065574,0.00278689,0.62342295,0.3269,0.04459508,0.00393443,0.0$
0114754,0,0,0
27,VideoGroundTruth, CaCO3 Rubble and
Sand, $1,0,0,0,0,0,0,0,0.49833333,0.32,0.13333333,0.04833333,0,0,0,0,0.15333333,0.27833333,0.26833333,0.15166$ 667,0.085,0.045,0.015,0.00333333,0.54,0.37333333,0.08,0.00666667,0,0,0,0

28,VideoGroundTruth,Sand, $0.95775281,0.04224719,0,0,0,0,0,0,0.75772921,0.14046629,0.07149438,0.02362472,0$ $.00595506,0.00073034,0,0,0.53319438,0.24216404,0.11381798,0.05713933,0.03466011,0.01218989,0.00488427,0$ $.00194888,0.75461517,0.18720674,0.04546966,0.00940337,0.00302472,0.0002809,0,0$

29,VideoGroundTruth,Sand and CaCO 3
Rock, $1,0,0,0,0,0,0,0,0.83913043,0.11826087,0.04043478,0.00217391,0,0,0,0,0.34956522,0.35565217,0.17,0.0656$ $5217,0.03565217,0.0173913,0.00521739,0.00086957,0.67521739,0.29217391,0.03,0.00217391,0.00043478,0,0,0$

