Name:

Pacific Islands Watershed Institute

June 13-16th, 2011 He'eia State Park, Oahu, Hawaii

Pacific Islands Watershed Institute, June 13-16, 2011

Agenda

Time	The Context of Watershed Planning Monday, June 13	Identifying Watershed Projects Tuesday, June 14
8:00-9:00	Registration and Institute Welcome (8:30 start) – Kathy Chaston and John Christensen	E. Watershed Assessment Field Trip: Practice various field
9:00 – 10:00	A. Characteristics of Pacific Island Watersheds: How are Pacific island watersheds influenced by unique hydrologic and geomorphic conditions, local culture, and water resources? – Kathy Chaston and Rich Claytor	assessment techniques used to identify watershed restoration and protection opportunities such as stream assessments, stormwater retrofitting, neighborhood source assessments, and pollution hotspot source investigations. Individually drive /carpool from He'eia to the Windward Mall for morning field
10:00-11:00	B. Components of a Good Watershed Plan: What are the	investigations. A picnic lunch will be provided at a nearby
11:00 – 12:00	 basic elements of an effective watershed plan? Discuss the planning and implementation process as illustrated in the Hui o Koolaupoko and the Piti-Asan watersheds. – Anne Kitchell, Todd Cullison, and Maria Kottermair 	stream restoration site prior to neighborhood assessments. You will not need waders; however, be sure to wear a hat, bring sunscreen, and carry a bottled water with you. Be prepared for inclement weather.
12:00- 1:00	Lunch	
1:00 – 2:00 2:00 – 3:00	 C. Overview of Watershed Assessment Methods: An after- lunch "Watershed Scavenger Hunt" on the grounds of He'eia State Park provides an introduction to common field and desktop assessment techniques. Hone your skills at catchment delineation, drainage investigation, and pollution prevention in small groups. –Laurel Woodworth 	 F. Tropical Roundtables: Attend two concurrent technical discussions (see session handout for topic descriptions): 1. Rural land management – Carolyn Stewart & Jean Brokish 2. Pollution tracking & monitoring – Robin Knox & Dwayne Minton 3. Climate change –Victoria Keener & Melissa Finucane 4. Groundwater protection – Esther Taitague 5. Wastewater management – Hudson Slay & Rich Claytor 6. Land conservation – Butch Hasse & Umiich Sengebau
3:00- 4:00	D. Regulations and Policies: Discuss local (or island-wide) codes and policies that are needed to support successful watershed planning and implementation. – Dave Hirschman	G. Watershed Accounting and Project Ranking : How do you document the costs and benefits associated with restoration projects. Review the metrics and methods of measuring performance, prioritizing projects, and estimating pollution load reduction. – Dave Hirschman
4:00-5:00	Island Teams Session #1: The first of four facilitated group work sessions designed to advance planning and implementation activities in priority island watersheds or areas of interest. This session focuses on evaluating existing watershed planning efforts and environmental programs.	Island Teams Session #2: The second of four group work sessions. Use this time in your island group to revise assessment needs, report out from roundtables, and brainstorm an accounting framework that might be applicable to your area of interest.
After hours	Evening Social: Stick around He'eia for refreshments	On your own

Time	Managing Island Stormwater Wednesday, June 15	<i>Implementation</i> Thursday, June 16
8:00-9:00	H. Erosion & Sediment Control (ESC) for Islands: Discuss impact of inadequate ESC at construction sites. Review availability of ESC practices in Pacific islands, discuss common installation and maintenance issues, and preferred inspection	K. Engaging Stakeholders: Discuss when and how to involve elected/appointed officials, military officials, mayors, agencies, watershed groups, and other public stakeholders in watershed planning and implementation process. As group, brainstorm effect ways to bring challenging stakeholders to the table. <i>—Laurel Woodworth, Joyce Beouch, and Alyssa Miller</i>
9:00 – 10:00	and enforcement procedures. This session includes a group exercise for reading and evaluating an erosion control plan. — <i>Michelle West</i>	L. Implementation & Funding: What are key factors in ensuring the successful implementation of watershed plans and projects. Discuss tips for identifying and securing implementation funding in Pacific islands. – <i>Rich Claytor and Hudson Slay</i>
10:00-11:00	I. Stormwater BMPs for Islands Review stormwater performance measures and standards across the Pacific islands, and discuss site design techniques to reduce stormwater generation at new development and redevelopment	Island Teams Session #4 : In the last team work session, identify at least three actions items for your priority watersheds or areas of interest back home. Discuss key stakeholder involvement and potential sources of funding.
11:00 – 12:00	projects. This session will introduce a variety of large and small structural best management practices (BMPs), how they can be adapted to island settings, and ways to make them better. –Rich Claytor and Dave Hirschman	M. Wrap-Up & Evaluation: Island teams will report out their top action items and next steps. Participants will be asked to provide feedback on PIWI and complete evaluation forms.
12:00- 1:00	Lunch	
1:00 - 2:00	J. Field Trip: Stormwater & Pollution Prevention	
2:00 - 3:00	Learn the ins and outs of rain garden design, construction, and	
3:00 – 4:00	maintenance; explore various applications of compost socks for managing construction site runoff and long-term slope protection; and identify both structural and non-structural approaches for managing pollution at a nearby boat landing. —Todd Cullison, Adrian Sanchez, Michelle West	Lunch will not be provided
4:00-5:00	Island Team Session #3: The third of four work sessions. Use this time to refine ESC and stormwater program evaluations, identify demonstration sites back home, and/or evaluate existing design plans.	
After hours	Luau & PIWI Awards : Join us at He'eia for a not only a Hawaiian culinary tradition, but also an Institute tradition recognizing unforgettable participants and watershed moments.	

Participants List Pacific Island Watershed Institute June 13-16, 2011

American Samoa

Kuka Matavao

Environmental Engineer American Samoa Environmetal Protection Agency 684-633-2304 kuka.matavao@gmail.com

Aokusotino Mao

Senior Compliance Review Officer Department of Commerce 684-254-7752 / 684-633-5155 tino.mao@doc.as

Estela Rubin

Civil Engineer American Samoa DPW (684) 633-4141 es_rubin@yahoo.com

Uaealesi Doris Sipelii

Civil Engineer American Samoa DPW (684) 633-4141 doris@asgdpw.org

Christianera Tuitele

Water Program Manager American Samoa EPA 1 684 633 2304 christianeratuitele3@gmail.com

Commonwealth of the Northern Mariana Islands

Rachel Zuercher NPS Coordinator CNMI Coastal Resources Mgmnt 670) 664-8316 rachel.zuercher@crm.gov.mp

Fran Castro Manager, NPS and Watersheds CNMI Division of Environ.Quality 670-664-8525 francastro@deq.gov.mp

Lisa H. Eller

Program Coordinator CNMI Division of Environmental Quality 670-483-1006 lisahuyn@gmail.com

Dana Okano

Coral/Coastal Management Liaison NOAA OCRM 670-234-0005 dana.okano@noaa.gov

Steven Johnson

Marine Biologist CNMI Division of Environmental Quality,Nonpoint Source Pollution Branch/Marine Monitoring Program (670) 664 8524 stevenjohnson@deq.gov.mp

John Iguel

Environmental Specialist CNMI DEQ (670) 664-8500/01 johniguel@deq.gov.mp

Olivia Tebuteb

Environmental Technician CNMI DEQ (670) 664-8504(670) 664-8540 oliviatebuteb@deq.gov.mp

John Iglecias Arriola One-Start Coordinator CNMI DEQ 670-664-8540 jonathanarriola@deq.gov.mp

Guam

Margaret Aguilar Senior Program Coordinator Guam EPA 671.475.1607 margaret.aguilar@epa.guam.gov

Maria Kottermair

Graduate Research Assistant Water & Environmental Research Institute, UOG 1-671-685-6686 mariakottermair@gmail.com

Adrienne Loerzel

Coral management liaison and coastal specialist NOAA CRCP (671)472.7308 adrienne.loerzel@noaa.gov

Esther Marie G. Taitague

Planner Guam Coastal Management Program 671.475.9670 esther.taitague@bsp.guam.gov

Federated States of Micronesia & Republic of Palau

Joyce K. Beouch

Babeldaob Watershed Alliance Coordinator Palau Conservation Society 011-680-488-3993 jbeouch@gmail.com

Carlos Jose Cianchini

Terrestrial Program Assisstant Kosrae Conservation & Safety Org. (691) 370- 3673 cjcianchini@yahoo.com

Margie Falanruw

Director YINS & Technology Transfer Specialist (part-time) USFS Yap Institute of Natural Science & U.S. Forest Service (691) 350-4630 mfalanruw@mail.fm

Tina Fillmed

Executive Director Yap State Environmental Protection Agency 691-350-21163 epayap@mail.fm

Adelle Lukes Isechal

Researcher Palau International Coral Reef Research Center (680) 488 6950 lisechal@picrc.org

Jacob A. Sanney

Terrestrial Program Manager Kosrae Conservation and Safety Organization (691)370-3673 kcsoterrestrial@mail.fm

Umiich Sengebau

Deputy Director of Conservation The Nature Conservancy -Micronesia Program (680) 488 2017 fsengebau@tnc.org

Gwen Sisior

National Water Policy Support Officer EU Integrated Water Resource Management Ministry of Natural Resources, Environment & Tourism gsisior07@gmail.com

Francisca Sohl Obispo

Terrestrial Program Manager Conservation Society of Pohnpei 691-320-5409 cspterrestrial@serehd.org

Lynna E Thomas

Project Manager, Integrated Water Resource Management Palau Environmental Quality Protection Board (680) 488-3600 Iynna.thomas7@gmail.com

Steven Victor

Micronesia Conservation Planner The Nature Conservancy-Micronesia Program (680) 488 2017 svictor@tnc.org

William K. William

Project Manager Yela Environment Landowners Authority (YELA) (691)370-6002 wkwill98@yahoo.com

Erik Waguk

State Forester Kosrae Island Resource Management Authority 691) 370-2076/ 3646 kosraeforestry@mail.fm, ewaguk@yahoo.com

Hawaii

Maui

Jay Carpio Member/Abundance of Fishes Committee Chair Holon, LLC/ Maui Nui Resource Council 269-4006 jaycarpio@hawaii.rr.com

Maile Carpio

Project Coordinator/Clean Water Committee chair Community Work Day Program/ Maui Nui Resources Council 269-9687 mailecarpio@hawaii.rr.com

Luisa Castro

Assistant Water Quality Coordinator UH-Manoa, CTAHR 8088781213 luisac@hawaii.edu

Linda Castro Member

Maui Nui Resource Council

Jonathon Ching

Project Planner Office of Hawaiian Affairs 808-594-1948 jonathanc@oha.org

Emily Fielding Maui Marine Program Coordinator The Nature Conservancy, Hawaii 808-856-7668; 808-284-3961 efielding@TNC.ORG

Dr. Melissa Finucane

Senior Fellow, East-West Center Pacific RISA 808-944-7254 FinucanM@EastWestCenter.org

Mary Joergensen

Planner V County of Maui Planning Department Long Range Division 808-270-8241 Mary.Jorgensen@mauicounty.gov

Luna Kekoa

NOAA coral fellow DLNR - Division of Aquatic Resources 808 349 6095 edward.I.kekoa@hawaii.gov

Robin Knox

Coordinator, Southwest Maui Watershed Plan Principal Scientist, Water Quality Consulting, Inc (808)214-9281 wqcinc@hawaii.rr.com

Ekolo Lindsay

President Maui Cultural Lands & Maui Nui Marine Resource Council (808) 276-5593 EkoluMCL@hawaii.rr.com

Alyson Napua Barrows

Director Waihe'e Limu Restoration 1-808-264-4135 napua@waiheelimurestoration.com

Sharon Sawdey

Civil Engineer NRCS 808-541-2600 x125 sharon.sawdey@hi.usda.gov

Hawaii /Kauai/Molokai

Margaret Fowler

Project Coordinator Mauna Kea Soil & Water Conservation District 808-885-6602 x100 margaret.fowler@hi.nacdnet.net Butch Haase Executive Director Molokai Land Trust 808.553.5626 butch.haase@gmail.com

Elizabeth Pickett Fee

Executive Director Hawaii Wildfire Management Organization (808) 885-0900 elizabethpickett@gmail.com

Matt Rosener

Hydrologist The Waipa Foundation, Kauai 808-639-2640 laminarmatt@gmail.com

Carolyn Stewart

Consultant MCS International 808-885-6354 mcstewart@hawaii.rr.com

Oahu

Karen Ahh Mai

Executive Director Ala Wai Watershed Assn 808-955-7882 ahmai@hawaii.rr.com

Kathy Chaston

Pacific Coral Management Liaison& Watershed Management Specialist NOAA Coral Reef Conservation Program 808-525-5372 Kathy.Chaston@noaa.gov

Eric Co

Habitat restoration specialist NOAA restoration center (808) 944-2200 Eric.Co@noaa.gov

Jean Brokish

Watershed Project Manager Oahu Resource Conservation and Development Council 808-483-8600 x 123 jean.brokish@oahurcd.org Todd Cullison Executive Director, Hui o Koolaupoko 808-277-5611 tcullison@hawaii.rr.com

Catie Cullison

Project manager/planner PBR Hawaii 5215631 ccullison@pbrhawaii.com

Carl Evensen

Interim Associate Dean Extension University of Hawaii/ CTAHR 808-956-8397 evensen@hawaii.edu

Steve Frano

AS Coral management liaison and coastal specialist NOAA OCRM at Pacific Services Center 808-525-5373 steve.frano@noaa.gov

Ken Furukawa

Member Hau'ula Community Association 808-293-7719 hauulaken@yahoo.com

Andy Hood

Principal Sustainable Resources Group Intn'l. Inc (808) 356-0552 ahood@srgii.com

Brian Hunter

clean water planner state department health 808-586-7771 brian.hunter@doh.hawaii.gov

Danielle Jayewardene Coral Reef Ecologist

NOAA PIRO HCD 808-944-2162 danielle.jayewardene@noaa.gov Nahaku Kalei Assistant Marine Coordinator -Marine Fellow The Nature Conservancy 808-587-6212 nkalei@tnc.org

Dr. Victoria Keener Research Fellow, East-West Center Pacific RISA

808-944-7220 keenerv@eastwestcenter.org

Dot Kelly -Paddock

President, Hau'ula Rep Hau'ula Community Association, Koolauloa neighborhood board 808-255-6944 dotty.kelly@verizon.net

Sean Macduff

PhD student University of Hawaii at Manoa (808) 780-1763 sdmacduff@gmail.com

Kristen Mailheau

Community Coordinator Hui o Ko'olaupoko 808-381-7202 nalani@huihawaii.org

Alyssa Miller

Coordinator Malama Maunalua 808-228-0027 greenwaveproductions@gmail.com

Dwayne Minton

Science Advisor The Nature Conservancy 808-587-6172 dminton@tnc.org

Scott Moncrief

Project Manager EA Engineering, Science, & Tech., Inc. 808 589 1455 ext. 2881 smoncrief@eaest.com

Merick Patten Action plan coordinator Hui o Koʻolaupoko mpatten@huihawaii.org

Mark Paikuli-Stride Land steward in Luluku & organic farmer Luluku Farmers' Assoc. 808-330-3277 mpaikulistride@yahoo.com

James Rice Clean Water Program Manager US Army 808-656-3317 james.c.rice1@us.army.mil

Kenny Roberts CNPCP Coordinator Hawaii CZM Program 808-5872803 kenneth.w.roberts@dbedt.hawaii.gov

Adrian Sanchez Certified Erosion Control- Hawaii 808-734-5963 pacbioengineering@gmail.com

Austin Shelton Research Assistant/Ph.D. Student Dr. Robert Richmond Lab, Kewalo Marine Laboratory 808-782-9634 austin.j.shelton@gmail.com

Koa Shultz Kaneohe Marine Coordinator The Nature Conservancy Hawaii 808-741-3403 kshultz@tnc.org

Hudson Slay Watershed specialist US EPA Region 9 808-541-2717 slay.hudson@epa.gov

Dwight Streamfellow Water and Energy Conservationist Living Systems/ Instructor for Sustainable Farming Program, at Windward Community College 808-227-1295

streamfellow@yahoo.com Greg Takeshima Environmental Health Specialist Dept. of Health

8085864309 greg.takeshima@doh.hawaii.gov Amy Tsuneyoshi

Watershed Resource Specialist Honolulu Board of Water Supply 808-748-5936 atsuneyoshi@hbws.org

Carolyn Unser Watershed Planner O'ahu Resource Conservation and Development Council 808-292-8146 carolyn.unser@oahurcd.org

Jolie Wagner Maunalua Bay Coastal & Watershed Coordinator University of Hawaii Sea Grant 808-395-5050 wanger@hawaii.edu

Bradley Wong Assistant Marine Coordinator -Marine Fellow The Nature Conservancy 808-587-6211 bwong@tnc.org

Kyrie Yonehiro Community and Outreach Coordinator Kakoo Oiwi 808-352-0764 kyrie@kakoooiwi.org

Jan Yoshioka Strategy Manager Hawaii Community Stewardship Network 808-626-5490 jan@hcsnetwork.org

Mainland

Rich Claytor Principal Horsley Witten Group 508-833-6600 rclaytor@horsleywitten.com

Rob Ferguson Caribbean Coral Management Liaison& Watershed Management Specialist NOAA CRCP 301-713-3155 x 193 rob.ferguson@noaa.gov Dave Hirschman Program Director Center for Watershed Protection 434-293-6355 djh@cwp.org

Ray Jakubczak, Ph.D. Senior Consultant Cardno Entrix 813-333-3961 rjakubczak@entrix.com

Anwar Khan Water Resources Section/Manager/VP HDR Environmental Operation s 561-209-6608 Anwar.Khan@hdrinc.com

Anne Kitchell Sr. Environmental Planner Horsley Witten Group 508-833-6600 akitchell@horsleywitten.com

Michelle West Engineer Horsley Witten Group 508-833-6600 mwest@horsleywitten.com

Laurel Woodworth Stormwater and Watershed Planner Center for Watershed Protection 434-293-5793 Iw@cwp.org

2011 Pacific Island Watershed Institute Evaluation Form

Your Name (optional): ____ Your Organization Type : Non-Profit Local Gov. State/Territorial Gov. Federal Gov. Private Consultant Academic Other: **Sessions:** Please rate the quality of the information Did Not \rightarrow Adequate \rightarrow Excellent Poor presented during each institute session. Attend Day 1 Session A: Characteristics of Pacific Island Watersheds 2 4 5 N/A 1 3 4 Session B: Components of a Good Watershed Plan 1 2 3 5 N/A Session C: Overview of Watershed Assessment 2 3 1 4 5 N/A Methods/He'eia Drainage Detection Session D: Regulations and Policies 2 3 5 N/A 1 4 Day 2 Session E: Watershed Assessment Field Trip 1 2 3 4 5 N/A Session F: Topical Roundtables 2 5 N/A **Rural and Land Management** 1 3 4 2 4 5 N/A Wastewater Management 1 3 **Pollution Tracking and Remediation** 1 2 3 4 5 N/A 3 **Groundwater Protection** 1 2 4 5 N/A Land Conservation 1 2 3 4 5 N/A 3 **Climate Change** 1 2 4 5 N/A Session G: Watershed Accounting and Project Ranking Day 3 Session H: Erosion and Sediment Control 2 3 5 N/A 1 4 Session I: Stormwater BMPs for Islands 1 2 3 4 5 N/A 1 2 3 5 N/A Session J: Stormwater Field Trip 4 Day 4 2 3 N/A Session K: Engaging Stakeholders 1 4 5 2 3 4 5 Session J: Implementation and Funding 1 N/A Favorite or most useful session(s) attended?

Least beneficial of the sessions attended?

Overall PIWI: Please rate the following	Poor	>	Adequate	<i>></i>	Excellent	Did Not Attend
Overall quality of the PIWI sessions	1	2	3	4	5	N/A
Technical content	1	2	3	4	5	N/A
Group Activities and Field Time	1	2	3	4	5	N/A
Notebook usefulness	1	2	3	4	5	N/A
Usefulness of Island Work Sessions	1	2	3	4	5	N/A
Recommendations for next time (please circle):						
Pace of sessions	Sar	ne	Slowe	er	Fas	ter
Length of each session	Sar	ne	Short	er	Lon	ger
Total number of sessions offered	Sar	ne	Fewe	er	Mc	ore
Time spent in the field	Sar	ne	Less		Mc	ore
Lecture time	Sar	ne	Less		Mc	ore
Time to work in small groups	Sar	ne	Less		Mc	ore
Hands-on activities	Sar	ne	Less		Mc	ore
Instructors: Please rate the following:	Ро	or	→ Ad	equate	\rightarrow	Excellen
					4	5
Overall, how would you rate the instructors?	1	-	2	3	4	-
Overall, how would you rate the instructors? Technical knowledge	1		2	3	4	5
· · · · · · · · · · · · · · · · · · ·		-			-	
Technical knowledge	1	-	2	3	4	5
Technical knowledge Ability to convey technical knowledge your level	1	-	2 2	3	4	5
Technical knowledge Ability to convey technical knowledge your level Anyone in particular that stood out?	1	or	2 2	3 3	4	5
Technical knowledge Ability to convey technical knowledge your level Anyone in particular that stood out? Logistics: Please rate the following:	1 1 Po	- - or	2 2 → Ad	3 3 equate	4 4 -→	5 5 Excellen
Technical knowledge Ability to convey technical knowledge your level Anyone in particular that stood out? Logistics: Please rate the following: Conference facilities at He'eia	1 1 Po	- - or	2 2 → Ad 2	3 3 equate 3	4 4 → 4	5 5 Excellent 5

Mahalo. We appreciate the feedback.

Speaker Bios Pacific Island Watershed Institute June 13-16, 2011

Margaret Aguilar is a Senior Program Coordinator for the Guam Environmental Protection Agency. She joined Guam EPA in 2003; and began her assignment with the water division in 2007 primarily coordinating non point source related projects. Margaret's current projects include: the upcoming 2011 Guam Stormwater Workshop; an ARRA grant project to develop an updated management plan for a priority water resource watershed; the development and administrative adjudication of the proposed Guam Erosion Control and Stormwater Management Rules and Regulations; and the development of Guam's 2012 Integrated Surface Water Quality Monitoring and Assessment Report. Ms. Aguilar has a B.S. degree in Biology from the University of Guam and nearly fifteen years of experience as a planner in the government sector.

Joyce Beouch is the Belau Watershed Alliance Coordinator with the Palau Conservation Society where she has spent the last three years engaging community partners in watershed protection and restoration activities. Before Conservation, she worked as an educational technology coordinator for Ministry of Education. Joyce has a BA in Social Science with a focus on Cultural Anthropology & a minor in Sociology.

Jean Brokish is a Project Manager with the Oahu Resource Conservation and Development Council, where she works with members of the agricultural community to reduce soil erosion and protect good water quality. Jean has experience working with EPA 319 funds and is currently implementing watershed plans in the Waimanalo and Honouliuli Watersheds on Oahu. She is familiar with agricultural best management practices, the conservation planning process, NRCS Farm Bill programs, and the roles of Soil and Water Conservation Districts. She received a B.S. in Agronomy from the University of Wisconsin-River Falls and a M.S. in Soil Science from Purdue University.

Kathy Chaston is the Hawaii coral management liaison and Pacific watershed management specialist for NOAA's coral reef conservation program based in Honolulu. With over 15 years experience in marine and coastal management, Kathy supports coral reef and watershed management activities in Hawaii, Guam, CNMI, and American Samoa. Before joining NOAA, Kathy was extension faculty at the University of Hawaii. For 3 years, she coordinated a state-wide strategy aimed at reducing land-based pollution impacts to Hawaii's coral reefs. Kathy was also the coastal resource manager for the Koror State Government in Palau, the development officer for the Yap Community Action Program in Yap, FSM, and an environmental consultant in Queensland, Australia. Kathy has a PhD in Marine Botany from the University of Queensland in Brisbane, Australia examining the impacts of agricultural runoff on coastal ecosystems.

Rich Claytor, P.E., LEED AP, is the Principal Engineer at the Horsley Witten Group, Inc. (HW) in Sandwich, MA. Rich has more than 25 years of water resource management experience with specific expertise in watershed management, stormwater management design, program assessment, policy, and evaluation. Rich has conducted trainings and development of stormwater design standards throughout the Pacific, including development of the current Guam/CNMI stormwater manual. Rich has a Bachelor of Science degree in Civil Engineering from Union College, with a concentration in Hydrology, Hydraulics, Water Resources, and Geotechnical Engineering. He is a licensed Professional Engineer in Massachusetts, New Hampshire, Maryland, and New York.

Todd Cullison is the Executive Director of Hui o Ko`olaupoko (HOK), which proactively implements projects in the Ko`olaupoko moku (Makapu`u to Kualoa) that address land-based pollution/watershed health as they impact water quality and the receiving waters of Waimanalo, Kailua and Kane`ohe Bay. Prior to Todd's tenure with HOK, he worked for over five-years on the North Oregon coast and in the Columbia River Estuary. His focus was community-based watershed restoration with an emphasis on salmon. Projects included design and implementation of large-scale estuarine and riverine habitat restoration and associated project effectiveness monitoring.

Rob Ferguson is the Coral Reef Watershed Management Specialist for NOAA's Coral Reef Conservation Program, where he works primarily on issues of land-based sources of pollution in the Atlantic/Caribbean region. Rob has a long history working on environmental issues on and with island communities. Rob has assisted local communities in the Caribbean, the South Pacific, and in Central America to create marine resource adaptive management plans, mitigate the impacts of over fishing, conduct coral reef monitoring surveys, tag sea turtles, and develop environmental education programs. He received his B.S. in Biology from Buena Vista University and dual M.S. degrees in Natural Resources and Sustainable Development from American University in Washington D.C. and the United Nations Mandated University for Peace in Costa Rica.

Dr. Melissa Finucane is a Senior Fellow at the East-West Center in Honolulu, Hawai'i. She received her Ph.D. in Psychology from the University of Western Australia. Her empirical research focuses on the interplay of emotion and cognition and the role of socio-cultural factors in judgment and decision processes under conditions of uncertainty. Dr. Finucane's research has been funded by the National Science Foundation, National Institutes of Health, NOAA, and other organizations. She has published numerous book chapters and peer-reviewed journal articles and is a member of the Society for Judgment and Decision Making.

Butch Haase has a background in hydrogeology and forest ecology, and is the current Executive Director for the Molokai Land Trust (MLT), which was incorporated in 2006 and manages about 1,900 acres on Molokai. To address siltation of nearshore marine resources through the eradication of invasive species and the revegetation of native species, MLT is currently engaged in a 60-acre dune restoration program, a 2-acre hardpan restoration project in conjunction with the USDA NRCS Plant Materials Center on the West Molokai Preserve, and a 2 acre ohia watershed restoration project on our East Molokai Preserve. The two MLT preserves comprise two very different ecosystems - low elevation dry/desert and mid elevation mesic forest.

Dave Hirschman serves as a Program Director for the Center for Watershed Protection. In this capacity, he helps coordinate the Center's stormwater, better site design, local restoration, and training projects, focusing on technical and program tools for use by local, state, and territorial governments. He has also developed stormwater program materials for various states, territories, and local governments, and has led numerous workshops on stormwater design and program implementation. Dave has 27 years of experience in stormwater and water resources management in the public, private, and non-profit sectors.

Dr. Victoria Keener is a Research Fellow at the East-West Center in Honolulu, Hawai`i, and the Program Manager of the Pacific RISA. Dr. Keener received her Ph.D. in Agricultural & Biological Engineering from the University of Florida, specializing in hydro-climatological research dealing with the effects of climate variability and ENSO on both physical modeling and statistical hydrology of freshwater pollutant loads. She has also done interdisciplinary research on the integration of climate information into public Water Utilities' decision making. Anne Kitchell is a senior environmental planner with the Horsley Witten Group (HW) and has been working for over 12 years with practitioners throughout the mainland US, the Pacific islands, and the Caribbean on watershed planning, stormwater management, and erosion and sediment control training. She has developed dozens of watershed plans to reduce impacts to impaired waters and to protect coral reefs, drinking water supplies, and other aquatic resources. Prior to joining HW, Anne was a program manager at the Center for Watershed Protection, where her obsession for detecting and eliminating polluted runoff was first realized. She has BS degrees in both Marine Science and Biology from the University of South Carolina, and a MS in Marine Policy from the University of Delaware.

Robin Knox is the Coordinator for Southwest Maui Watershed Plan and Principal Scientist for Water Quality Consulting, Inc. She is an environmental scientist with 30 years experience including clean water regulation, coastal ecology research, ecosystem restoration, and water quality planning and management. For the past 6 years, Robin has been studying the relationships of pollution sources to observed water quality impairments, and analyzing the relevant policies which are intended to regulate pollution sources, mitigate impacts, or manage natural resources.

Maria Kottermair is a recent graduate of the University of Guam Environmental Science Master's Program. While there she developed a watershed management plan for Piti-Asan as part of a NOAA scholarship she received and worked on a thesis project that analyzed the temporalspatial dynamics of badlands in southern Guam. Having received a diploma (bachelor equivalent) in Cartography and Geomedia-Technology from the Munich University of Applied Sciences, she has considerable expertise in Geographic Information Systems. She works now at the Bureau of Statistics and Plans Coastal Management Program on different watershed-related GIS projects.

Alyssa Miller was recruited in 2005 to start up the local community-based conservation organization Mālama Maunalua. The organization's mission is to conserve and restore Maunalua Bay by engaging and empowering community, and by forming strong partnerships with scientists, government, business and NGOs in order to execute strategic actions to address the high priority threats affecting marine and watershed resources. Miller previously worked as environmental planner on coastal management projects, and was a co-author of the *Hawaii Coastal Nonpoint Pollution Control Management Plan.* She has a Master of Urban and Regional Planning degree and a Ph.D. in Geography from the University of Hawaii. **Dwayne Minton** is a coral reef biologist who has worked on marine management and conservation issues across the Pacific, including Indonesia, Guam, the Northern Mariana Islands, the Federated States of Micronesia, Kwajalein, Hawaii, and Palmyra. He has always taken a watershed approach to management, firmly believing that effective coral reef management begins on land. He has conducted studies on the link between wildfire and coral reef health and sediment effects on coral recruitment. For several years, he worked as a technical expert responsible for assessing damage to coral reefs resulting from human activity and developing mitigation approaches capable of offsetting those impacts. In 2010, he joined The Nature Conservancy as a Science Advisor.

Adrian Sanchez is with Certified Erosion Control Hawaii, an Oahu-based firm that provides a range of erosion and sediment control and compost utilization services. Adrian has specialized expertise in the various applications of Filtrexx products, including living wall systems, and on the selection of compost materials for improved stormwater filtration and product performance. He was formerly a structural mechanic in the United States Navy, which is what originally brought him to the Aloha state on the Kon-Tiki.

Umiich Sengebau is the Deputy Director of Conservation for The Nature Conservancy – Micronesia Program based in the Palau Field Office. He oversees the implementation of The Conservancy's conservation program within Micronesia Region. His knowledge and practical experiences are in the areas of biodiversity conservation, environmental monitoring, impact assessments, and environmental planning and policy. Prior to joining TNC, he was an environmental specialist for Dueñas & Associates, Inc firm preparing and conducting environmental impact assessment reports, biological baseline surveys and environmental monitoring for development projects in Guam. He received a M.S. in Environmental Science from University of Guam and B.A. in Anthropology from University of Hawaii at Manoa.

Hudson Slay works as an environmental scientist for the U.S. Environmental Protection Agency, Region 9 and is based in the Pacific Islands Contact Office in Honolulu. He currently coordinates EPA water program activities in Hawaii and is involved in a wide variety of water quality and watershed management issues. He has extensive experience with EPA's coastal and watershed-related regulatory and management programs. He received a Bachelor of Science in Biology and Environmental Studies from Emory University and a Master of Environmental Management from Duke University. **Carolyn Stewart** is a Principal Consultant with Marine and Coastal Solutions (MCS) International, Inc., a Hawaii-based environmental resources management planning firm. She has over 20 years of experience working in coastal and marine resources management, with an emphasis on polluted runoff control and watershed management.

Esther Marie G. Taitague is a Watershed and Stormwater Planner with the Guam Coastal Management Program of the Bureau of Statistics and Plans. She worked on the development of the Piti-Asan Watershed Management Plan and completion of the Conservation Action Plan (CAP) for the Piti watershed. Other experiences include reforestation, streambank stabilization, and community based watershed outreach projects for Piti. Esther provided technical expertise in the development of NOAA's Coral Reef Conservation Program Priority Setting document for Guam's Coral Reef Management Priorities. Esther has over 10 years of experience in public service. Previously working as a spokeswoman for Guam Waterworks Authority, she has always believed that "our actions on land ultimately affect the water - the water we drink and the water we leisure in." She has a BS in Public Administration from the University of Guam.

Laurel Woodworth is a Stormwater and Watershed Planner with the Center for Watershed Protection, working out of the Charlottesville, VA office. Her areas of knowledge and expertise include the design features and maintenance of stormwater management practices, erosion control practices, and local stormwater and watershed management program development. Her past work experience includes working for the County of Albemarle, VA on stormwater BMP maintenance inspections and coordinating the citizen water quality monitoring program and other projects for the Alliance for the Chesapeake Bay. She received a B.A. in Environmental Science and a B.A. in Environmental Thought & Practice from the University of Virginia.

Michelle West is an engineer with Horsley Witten Group, based on Cape Cod, MA. She has more than 8 years of water resource design and assessment experience with specific expertise in low-impact development (LID), stormwater management, and watershed planning. Michelle was the principal author for the CNMI and Guam Stormwater Management Manual, assisted with the Palau Stormwater manual, and has presented at rural LID, stormwater design, and ESC workshops in Guam, CNMI, Palau, and Hawaii. She graduated from the University of Michigan with BS in Civil and Environmental Engineering and Natural Resources Management, as well as a MS in Environmental Engineering. Go BLUE!

Island Work Sessions

2011 Pacific Island Watershed Institute

Description: Each day, participants will be divided into island groups and asked to complete a portion of this packet. The intent of these sessions is to allow you to reflect on the discussions from each day of the institute and to apply those lessons on your island or in priority watershed(s) back home. As a group, you are charged with answering the following 10 questions designed to help you advance watershed planning and implementation. You should begin each session with a quick review of the material covered in previous sessions that day. Each group will need to select a spokesperson to report out during Session M, the last session of the Institute. Each group will also be assigned a PIWI facilitator to help guide you through the material.

Monday, Session #1: The Context of Watershed Planning

Area(s) of Interest: List the priority watershed(s) or larger island area that will be the work session focus.

Watershed Plan(s): List existing watershed plan/report(s) in your area(s) of interest. Please indicate if no plans currently exist, or if efforts are underway. Rate implementation efforts as "advanced," "moderate," "preliminary," or "non-existent."

Group Spokesperson: Who in your group will report out your findings at the end of the Institute?

1. Do the watershed plans in your area of interest include all the elements of a comprehensive planning process discussed in Sessions B and C? If not, where are the major gaps and how do you propose to fill them? If you do not have completed watershed plans, brainstorm key tasks you think the process should include. For each new task, identify existing information/resources that are available and new data that will have to be generated.

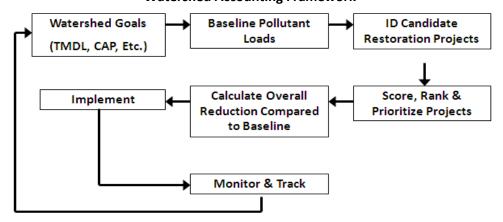
2. Identify territorial regulatory/programmatic gaps that may affect your island watersheds based on discussions from Session D. Circle the top three gaps you think are priorities for addressing. See the Self-Assessment completed as part of Session D. *Note that ESC and post-construction programs will be revisited on Wednesday*.

Tuesday, Session #2: Identifying Watershed Opportunities

3. Based on today's field trip, are there any additional assessments you think need to be conducted in your area of interest to identify potential watershed restoration/protection opportunities? Review yesterday's work session (see Question #2).

4. What lessons from the Session F roundtables are applicable to watersheds in your area of interest? Identify one or two actions/next steps for each of the topics listed below:

Wastewater Management		
Climate Change		


Groundwater Protection

Land Conservation

Rural Land Management

Monitoring

5. Review the watershed accounting framework presented in the Session G and shown below.

Watershed Accounting Framework

A. Do your watershed goals have quantitative targets that can be measured and tracked over time? If not, brainstorm potential goals for your watershed(s) that do. B. What are the pollutants of concern in your watershed(s)? Have baseline pollutant load estimates been adequately estimated for watersheds in your area of interest? If not, propose a process for doing so, or document why it is not necessary.

C. Which ranking metrics do you think should be used to prioritize watershed projects for implementation?
D. Have pollutant load reductions been adequately accounted for from projects implemented in your area of
interest. If not, brainstorm a process for estimating and tracking of this information.

Wednesday, Session #3: Stormwater Management

6. Based on Sessions H and J, identify technologies or additional program elements needed to improve erosion and sediment control (ESC) in your area of interest. Review your previous work session notes (Question #3).

7. Based on Sessions I and J, identify technologies or additional program elements needed to improve postconstruction stormwater management. Review your previous work session notes (Question #3).

8. Based on the pollution prevention discussions during the field trips each day, identify program elements needed to improve pollution prevention activities in your area of interest.

9. Identify one or two stormwater demonstration projects, or sites to investigate when you get home (e.g., parks, government buildings). Describe what needs to be done to advance implementation (e.g., parties or agencies that need to buy into the project, who to contact, design, grant funding). Alternatively, if you brought some designs with you, evaluate existing plans as a group.

Thursday, Session #4: Implementation

10. Identify 3 actions items (e.g. programmatic changes, project implementation, and planning activities), key stakeholders, and potential funding options for completing these activities in your area of interest.

Action 1	
----------	--

Major players who must be involved:

Potential sources of funding:

Action 2.

Major players who must be involved:

Potential source of funding:

Action 3.

Major players who must be involved:

Potential source of funding:

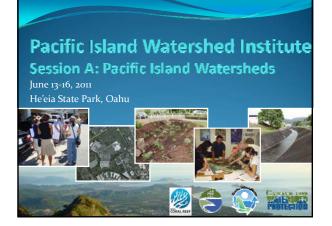
Session A: Characteristics of Pacific Island Watersheds

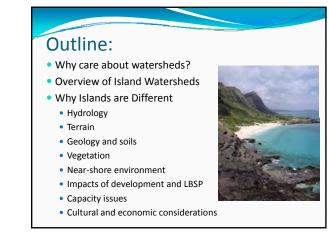
2011 Pacific Island Watershed Institute

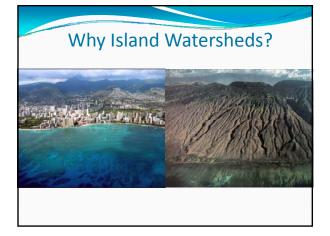
Description: How are Pacific island watersheds influenced by unique hydrologic and geomorphic conditions, local culture, and water resources?

Speakers:

- Kathy Chaston, NOAA Coral Reef Conservation Program
- Rich Claytor, Horsley Witten Group

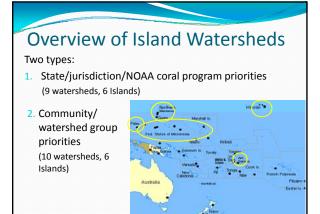

Topics/Notes:

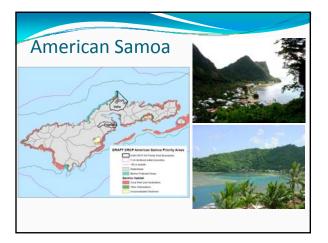

1. Island watersheds and associated coral priorities


2. The economics and cultural of island watersheds

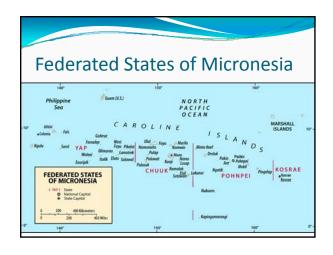
3. How does island hydrology and geology impact watershed management approaches?

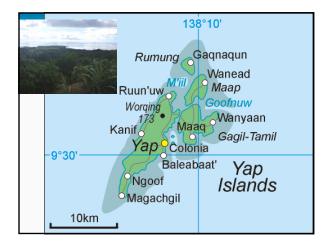
4. Alone on an island: The affect of isolation

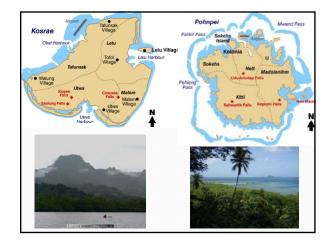


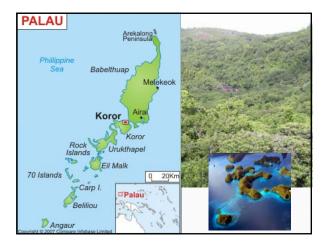


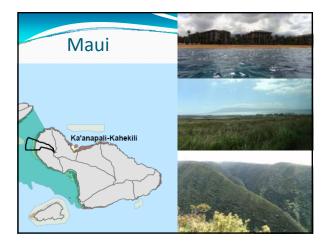




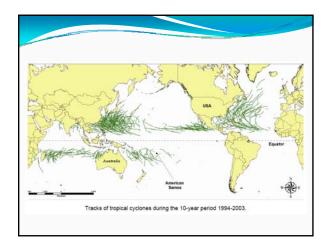


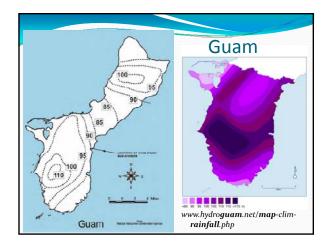


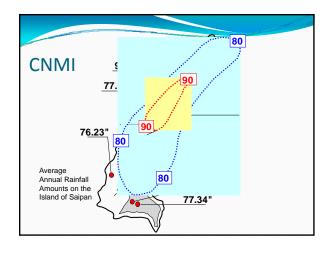


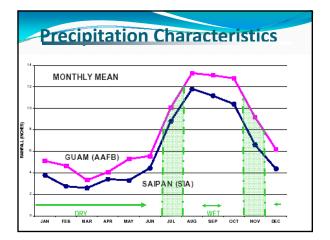


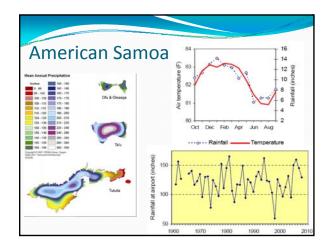
Why Islands are Different: The key technical factors

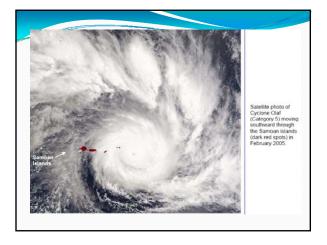

- Hydrology (Rainfall, infiltration, evapotranspiration);
- Terrain*;
- Geology* soils and geologic formations;
- Vegetation*
- Near shore environment*;
- Development patterns;
- Local capacity and experience; and
- Construction materials.
- * Hydrology is a big part of these factors as well

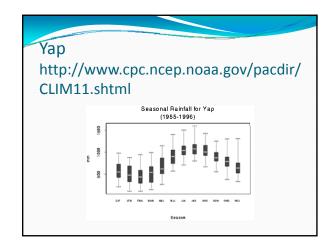

Hydrology

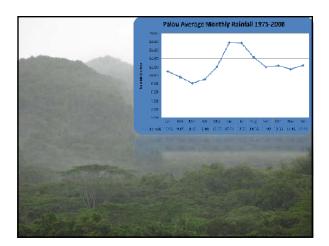

 Highly variable annual rainfall depending on elevation and aspect--10 to 300 inches per year;
 (Mainland 15 to 60 inches)

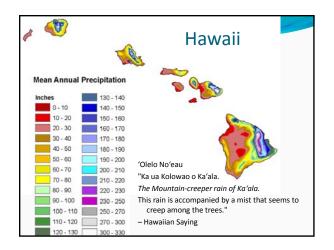


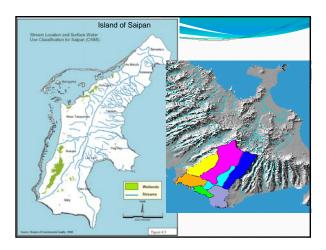

- (Mainland 15 to 60 inches)
- Leeward areas have extensive dry seasons;
- Evapotranspiration sends 60 to 70 inches back to the sky (mainland 15 to 30)
- Fog as much as 30% of annual rainfall at high elevations

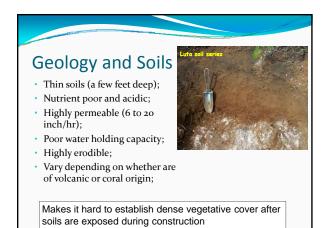




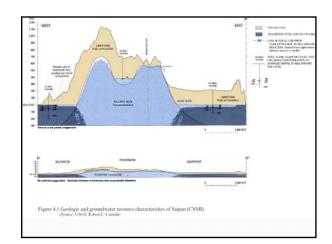


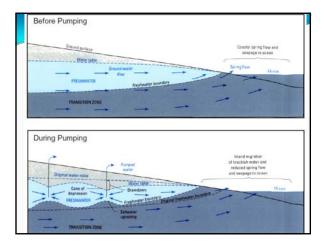


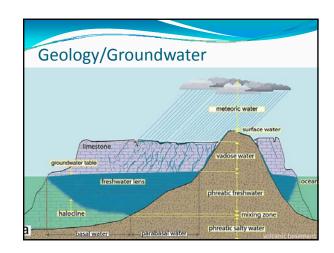

20202020		2-4-4-4-4-
	northern Guam	

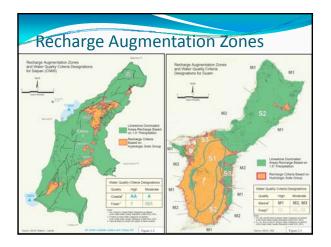

Interval (years)	Frequency (%)	Amount (inches)
1	100	3.5
2	50	7.0
10	10	10.0
25	4	20.0
50	2	27.0

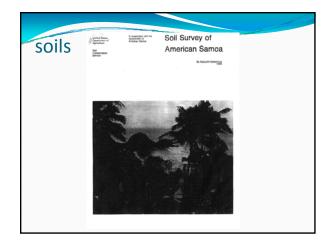
Terrain

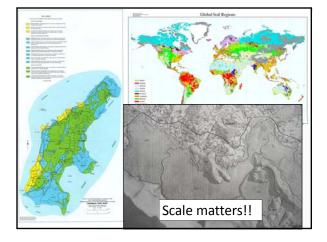

- Most islands have
 - areas of steep and flat terrain
 - very small watersheds
 - very short streams
- Steep terrain is recharge area for aquifers used in flat terrain

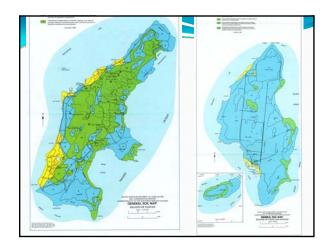

Steep Terrain Issues Flat Terrain Factors • Extremely steep slopes; Low Head; • Hillslope erosion and Ditch drainage (streams are rare); landslides; • Extensive erosion from Deeper soils; road systems; High water table; • Erodible but thin soils; • Lot of water to move; • Received 3 to 10 times Wetlands present. more rainfall; Forest slopes are primary island recharge areas; • Small short streams.



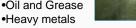






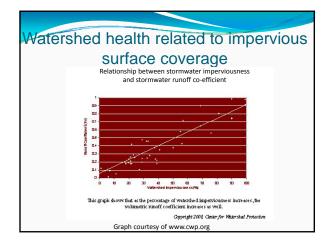


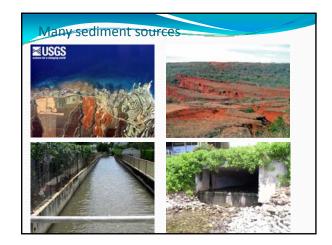
Vegetation


- Year round growing season;
- Invasive species a problem;
- Warm season grasses vary widely in their tolerance and nitrogen requirements;
- Some site preparation and soil amendments may be needed to get vegetation started;
- Native plant availability from island nurseries?
- Some traditional island plants may show promise (coir, taro)

What's in run-off?

- SedimentsNutrients
- •Trash & debris •Oil and Grease




- •Chemicals (pesticides, herbicides, pharmaceuticals) •Harmful microrganisms (pathogens) and other pollutants from overflowing septic systems, animal feces
- •Sewage from overflowing manholes •Fresh water & heat

Pollutants are transported in surface water runoff and groundwater seepage into coastal waters

Terrestrial Runoff is known to impact :

Growth & survival of hard coral colonies
Organisms that interact with coral populations & community structure

- Sediments reduce light and decrease coral growth
 Sediments smother corals
 Sloughing wastes energy
 Runoff effects coral reproduction & recruitment
 Coral settlement rates are near zero on
- sediment covered surfaces

Sediment tolerance is lower in new recruits

Nutrients in Island Runoff

- High loadings of Nitrogen and Phosphorus;
- Stormwater runoff and septic systems;
- Harm to coral reefs, seagrasses;
- Very hard to remove;
- Hi delivery rates.

Concentrations exceed Levels to protect coral Reefs by 100 to 1000 times

The Bacteria Challenge Swimming, shellfish harvesting and recreational contact limited in many urbanized watersheds; Storm water f.coli levels exceed standards by factor of 20 to 50; Stormwater practices need to reduce bacteria levels by 99% to meet standards.

Island Development Patterns

- Rapid growth focused on flatter terrain;
- New growth spreading up the hills;
- Hi land prices;
- Small parcels;
- On-site wastewater Disposal;
- Scarce fresh water;
- Rainwater harvesting.

Local Experience

- Many designers, contractors and reviewers are not familiar with innovative BMPs;
- Simple construction techniques desirable ;
- Plan on limited long term maintenance, beyond vegetative management;
- High sediment loads should be expected, even w/ ESC controls.

Social & Cultural Considerations

- Part of our way of life
- Traditional food, medicine, cultural & religious customs
- Spiritual relationships to ancestors and gods (renewed at marine and coastal areas or offering or marine resources)
- Part of creation legends
- Land-ownership

- Pharmaceuticals
- Education
- Culture
- Social values

Island	Total Ecn Value/YR	Tourism	Fisheries	Coastal Protection	Biodiversity
Global 2008	\$29.8 billion	\$9.6B	\$9B	\$5.7B	\$5.5B
Am Samoa 2004	\$5 million		\$775K	\$582K	
CNMI 2006	\$61.2M	\$42.3 M	\$1.3M	\$8M	
Guam 2007	\$127.3M	\$94.6M	\$4M	\$8.4M	\$2M
Hawaii (main) 2001	\$364M	\$304M	\$1.3M		\$10.5M

Session B: Components of a Good Watershed Plan

2011 Pacific Island Watershed Institute

Description: Discuss the key components of an effective watershed plan and why a comprehensive process is important for successful implementation. See how the watershed approach is evolving in two watersheds in Hawaii in Guam.

Speakers:

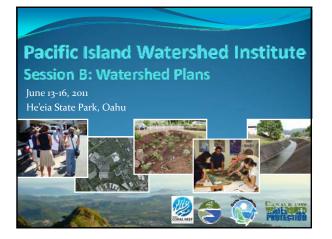
- Anne Kitchell, Horsley Witten Group
- Todd Cullison, Executive Director, Hui o Koolaupoko, <u>www.huihawaii.org</u>
- Maria Kottermair, Water & Environmental Research Institute, University of Guam

Resources:

- EPA Watershed Planning Criteria: <u>www.epa.gov/fedrgstr/EPA-WATER/2003/October/Day-23/w26755.htm</u>
- Center for Watershed Protection: Urban Subwatershed Restoration Manual Series <u>www.cwp.org</u>
- Global Coral Reef Monitoring Network and James Cook University: Catchment Management and Coral Reef Conservation <u>www.gcrmn.org/</u>

Topics/Notes:

1. What is a watershed plan?

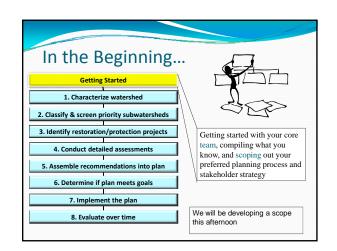

2. Planning to Implementation: Ko'olaupoko Watershed Case Study

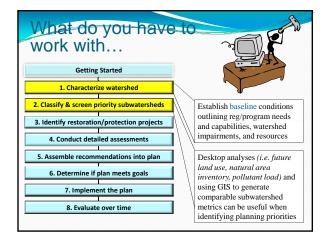
3. Integrating Conservation Area Plans with Watershed Management: Lessons from the Piti-Asan Watershed

US EPA Nonpoint Source Program and Grants Guidelines for States and Territories These guidelines apply to grants appropriated by Congress in Fiscal Year 2004 and in subsequent years. http://www.epa.gov/owow keep/NPS/cwact.html

Beginning in FY 2004, the following information must be included in watershed-based plans to restore waters impaired by nonpoint source pollution using incremental Section 319 funds:

- a. An <u>identification of the causes and sources</u> or groups of similar sources that will need to be controlled to achieve the load reductions estimated in this watershed-based plan (and to achieve any other watershed goals identified in the watershed-based plan), as discussed in item (b) immediately below. Sources that need to be controlled should be identified at the significant subcategory level with estimates of the extent to which they are present in the watershed (e.g., X number of dairy cattle feedlots needing upgrading, including a rough estimate of the number of cattle per facility; Y acres of row crops needing improved nutrient management or sediment control; or Z linear miles of eroded streambank needing remediation).
- b. An <u>estimate of the load reductions</u> expected for the management measures described under paragraph
 (c) below (recognizing the natural variability and the difficulty in precisely predicting the performance of management measures over time). Estimates should be provided at the same level as in item (a) above (e.g., the total load reduction expected for dairy cattle feedlots; row crops; or eroded streambanks).
- c. A <u>description of the NPS management measures</u> that will need to be implemented to achieve the load reductions estimated under paragraph (b) above (as well as to achieve other watershed goals identified in this watershed-based plan), and an identification (using a map or a description) of the critical areas in which those measures will be needed to implement this plan.
- d. An <u>estimate of the amounts of technical and financial assistance needed</u>, associated costs, and/or the sources and authorities that will be relied upon, to implement this plan. As sources of funding, States should consider the use of their Section 319 programs, State Revolving Funds, USDA's Environmental Quality Incentives Program and Conservation Reserve Program, and other relevant Federal, State, local and private funds that may be available to assist in implementing this plan.
- e. An <u>information/education component</u> that will be used to enhance public understanding of the project and encourage their early and continued participation in selecting, designing, and implementing the NPS management measures that will be implemented.
- f. A <u>schedule for implementing</u> the NPS management measures identified in this plan that is reasonably expeditious.
- g. A <u>description of interim, measurable milestones</u> for determining whether NPS management measures or other control actions are being implemented.
- h. A set of <u>criteria that can be used to determine whether loading reductions are being achieved over</u> <u>time</u> and substantial progress is being made towards attaining water quality standards and, if not, the criteria for determining whether this watershed-based plan needs to be revised or, if a NPS TMDL has been established, whether the NPS TMDL needs to be revised.
- i. A <u>monitoring component</u> to evaluate the effectiveness of the implementation efforts over time, measured against the criteria established under item (h) immediately above.

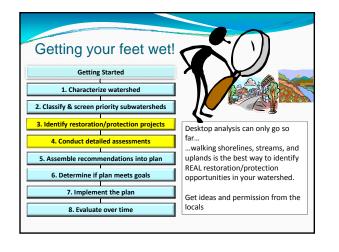


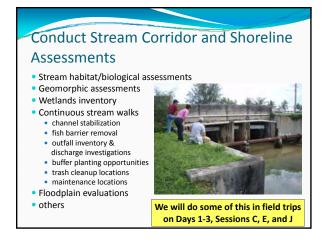

Common Outcomes of Watershed Planning

- Adopt/update development regulations
- Direct new development
- Conserve or acquire critical lands
- Install restoration projects
- Improve watershed awareness & stewardship
- Integrate efforts into daily municipal operations
- Create a watershed organization
- Enhance local capacity to manage watershed development
- Improve or maintain quality of water resource (hopefully)

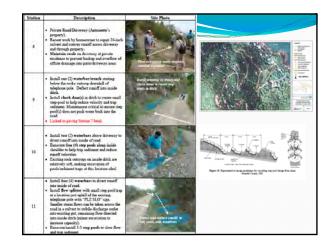
Common Steps in th Planning Pr	
Getting Started	Desktop Analysis
1. Characterize watershed	
2. Classify & screen priority subwatersheds	Field
3. Identify restoration/protection projects	Assessment
4. Conduct detailed assessments	Stakeholder
5. Assemble recommendations into plan	Input
6. Determine if plan meets goals	- Lorenza Line
7. Implement the plan	Management Decision
8. Evaluate over time	Series and series

Common Analyses Estimate Pollutant Loads Current and future land use -Future impacts to sensitive breakout of current land use in the watershed based on GIS areas – estimate future loss of sensitive areas due to land "accounting" may be required as part of TMDLs, NPDES, etc data and prediction of buildout development conditions Which tributaries and sources are the biggest culprits Protection and restoration Water balance/budget: • Where do we get the biggest bang for the buck sites – identify specific sensitive area sites that have particularly where Estimate pollutant loads for current watershed groundwater recharge is important protection or restoration conditions and future land use scenarios potential • Simple or complex models can be used Sensitive areas inventory maps and acreage of sensitive Depends on watershed areas in the watershed and characteristics..lets talk subwatersheds We will do some of this in Session G during Session F

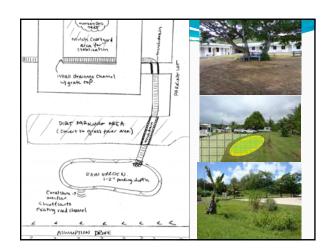

Potential factors to determine priorities

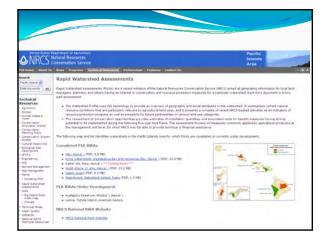

Assessment criteria

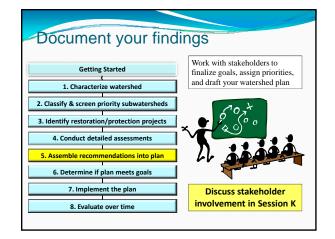
- Public health impairment
- Drinking water impairment
- Coastal resource (e.g., coral reefs) and marine resource impairment
- Threatened and endangered species habitat impairment
- Degradation of biodiversity

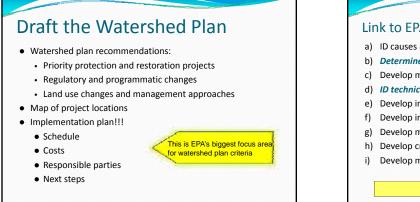

- Management criteria • High probability of
- success
- Likelihood of future development
- Planned restoration activities

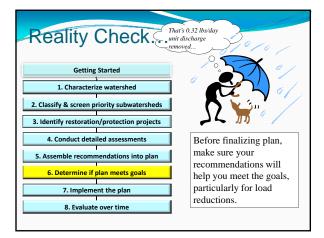
Classifying Watershed	s:	List of	Vatersheris with	Hydrologic Codes.	
Example: Guam's	Category	Restoration Year	Wateshed	NRCS Number	Priority Ranking
Clean Water Action Plan			Northern	20100003-000-001	1
	1	FY 1999-2000	Ugum	20100003-000-009	2
Category I - Watersheds needing			Talofofo	20100003-000-011	3
restoration			Agana	20100003-000-002	
			Apat	20100003-000-010	
Catagon II Watarahada naading			Apra	20100003-000-008	
Category II - Watersheds needing			Asalonso	20100003-000-013	
preventive action to sustain water		FY	Geus	20100003-008-020	
quality (i.e., meeting goals)	11	2001-2005	Inarajan	20100003-000-017	
			Pago	20100003-000-003	
Category III - Watersheds with			Togoha	20100003-000-007	
			Ylig	20100003-000-005	
pristine conditions on public lands			Piti/Asan	20100003-000-006	
			Cetti	20100003-000-014	
Category IV - Watersheds with			Dandan	20100003-000-015	
insufficient data to make an			Fonte	20100003-000-004	
assessment	4		Manell	20100003-000-019	
doocooment			Taelayag	20100003-000-012	
			Togwan	20100003-000-018	
			Umatac	20100003-000-016	

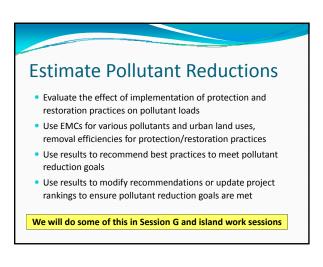


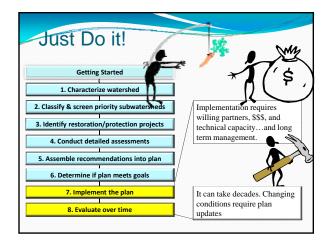












Implementing Plan

- Devise a long-term strategy for getting the plan adopted so it doesn't sit on the shelf
 - No universal method for adoption
 Must involve elected officials, local staff, regulators, media, and stakeholders
- Funding
- Training staff, contractors, etc
- Educating watershed citizens
- Setting up management structure and reporting/tracking mechanism

Discuss in more detail during Session L and your next steps during session M

Tips for an effective plan

- 1. Assign a lead
- 2. Plan at appropriate scale
- 3. Don't spend all your time and \$ on planning
- 4. Be strategic in new analyses and field work
- 5. Integrate with existing plans, local initiatives, stormwater requirements, capital budgets, etc
- 6. Involve stakeholders & implementation partners early
- 7. Include an implementation Strategy
- 8. Meet EPA 9 elements
- 9. Keep plan short and sweet and updated
- 10. Use technical memos to hold geeky watershed information

5

To protect ocean health by restoring the 'āina: mauka to makai

Outline of Presentation

Watershed Restoration Action Strategy
Missed Planning Opportunties
Past and Current Restoration Projects
Current Planning Efforts
Urban Assessment Data Sheets
Future Efforts
Questions

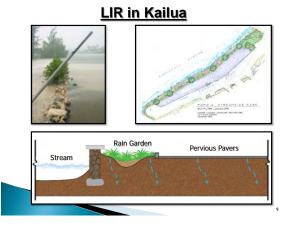
Watershed Restoration Action Strategy (WRAS)

- EPA/Hawai'i Dept. of Health, Clean Water Branch 319 grant
- · Koʻolaupoko: EPA Priority Watershed(s)
- · Two-year project
- Largely GIS-based and literature review
 Attempt to bring in ideas from community
- · Focused on watersheds on the 303 (d) list
- Should have looked at other issues, opportunities, etc. outside of 303 (d)

What our planning effort missed?

- More time conducting field assessments
 - · Higher resolution of watershed problems
 - Followed by prioritization
- Better modeling of watersheds
- · General analysis of entire 43,000 acres
- Inter vs. intra
- I.e. Conservation land vs. urban
- Connecting with other entities, especially agencies
 Other watershed planning efforts
- Setting benchmarks and goals for restoration efforts
- Low-hanging fruit
- More difficult to identify when working with NPS

Kāne'ohe Storm Water Project



He'eia Riparian Restoration

Over 3,000 hours of community volunteer hours replanting more than 2,000 feet of riparian habitat.

Waihe'e Stream Fish-passage

BWS, KEY Project, USFWS, USGS, CCH Parks, DAR, HOK

Kaha Gardens

Kaha Garden is a living example of how individual homeowners can help improve the local environment through the use of native vegetation and xeriscape gardens.

Rain Gardens

- Developing Hawai'i Rain Garden Manual
- Building/cost sharing 50 rain gardens with Koʻolaupoko homeowners

14

Pacific Island Watershed Institute: Session B: Watershed Plan Components

Urban Watershed Assessment

- Focusing on urban areas to prioritize storm water retrofit opportunities
 - Land use
 - Parcel Size
 - Opportunity for retrofits in highly developed areas
 BMPs
 - Pollution Prevention/Education and Outreach
- > > pollution reduction = higher prioritization
- > Ultimately, at the community level, all projects are

ACTIVELY OPPORTUNISTIC

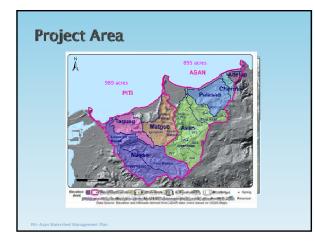
Field Assessment in an Urban Setting

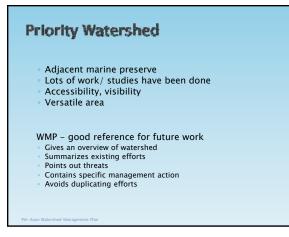
What's Next?

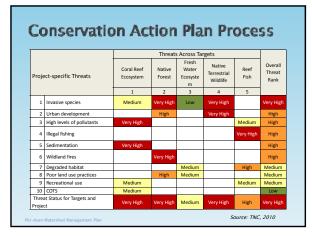
- Position HOK as leading entity promoting and encouraging Green Infrastructure
- Implement LIR projects in urban areas
- Coordination with CCH on Green Streets program
- Continue low-tech, community support projects, i.e riparian restoration, water quality monitoring, rain gardens and education

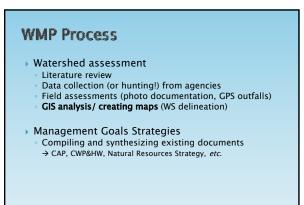


Todd Cullison, Executive Director 808-277-5611 tcullison@hawaii.rr.com

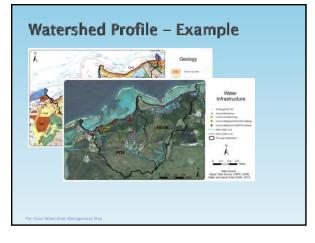

Kristen Mailheau, Community Coordinator 808-381-7202 nalani@huihawaii.org


Merrick Patten, Action Plan Coordinator mpatten@huihawaii.org

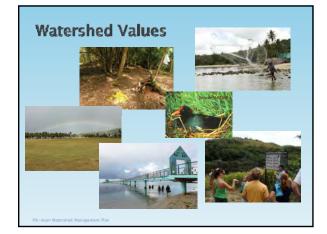




Management Goals Example Coal 1. Improve Stormwater Quality and Reduce Runoff. Goal 1.1 Improve stormwater-related issues and demonstrate innovative practices. Strategic Action: improve existing infrastructure. Strategic Action: incorporate "green" infrastructure for new developments. Strategic Action: Prevent municipal and commercial pollution. Action Step #1: conduct public awareness campaign (Waste storage) wastewater discharges. Action Step #2: ensure long-term maintenance of existing BMPs. Coal 1.2. Reduce erosion and sedimentation.


Outline of Plan

- Watershed profile
- Watershed values
- Threats
- Conservation Status
- Monitoring Programs
- Management Strategies
- Next Steps


Outline of Plan

- Watershed profile
- Watershed values
- Threats
- Conservation Status
- Monitoring Programs
- Management Strategies
- Next Steps

Outline of Plan

- Watershed profile
- Watershed values
- Threats
- Conservation Status
- Monitoring Programs
- Management Strategies
- Next Steps

Monitoring Programs

Management Goals

- Improve Stormwater Quality
- Increase Biodiversity
- Increase Watershed Awareness
- Report Management Progress
- Enhance Coral Reef Ecosystem

Next Steps

- Implementation of Plan
- Establish a Watershed Clearing House
- Report Status of Conservation Efforts
- Combining Efforts

Session C: Overview of Watershed Assessment Methods

2011 Pacific Island Watershed Institute

Description: After lunch "Watershed Scavenger Hunt" on the grounds of He'eia State Park as an introduction to common field and desktop assessment techniques.

Exercise #1: Examine the map of the Heiaa/Kea'ahala watershed and answer the following:

1. Outline the stream corridor. How many miles of stream in each watershed? What would be your strategy for assessing stream conditions here?

- 2. Circle locations where retrofit and hotspot inventories would be useful.
- 3. What type of pollutants or other watershed issues do you anticipate in this watershed?

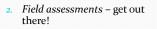
4. What restoration opportunities would you anticipate focusing on?


5. What other information would be useful in developing your field assessment strategy?

Exercise #2: Using the State Park aerial map, go outside and complete the following steps:

- 1. Delineate impervious cover on site (don't cross road or stream).
- 2. Draw in catchments/drainage paths and discharge locations on map.
- 3. Identify potential sources of pollution. Describe here:

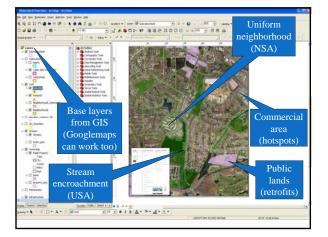
4. Come up with at least one restoration project concept – "structural" or "non-structural." Describe here:

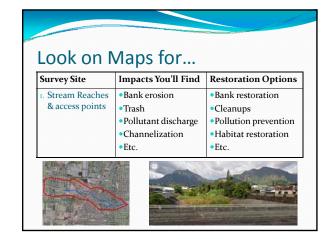


HOW to Assess Your Watershed?

2-Steps:

 "Desktop" analysis – look at maps to plan your field assessments




[Only way to *really* find specific restoration opportunities.]

Terminology

- *Subwatershed* = 10 sq. miles or less
- Stream corridor = channel, its banks, and floodplain
- Upland areas = everything up-hill of stream corridor



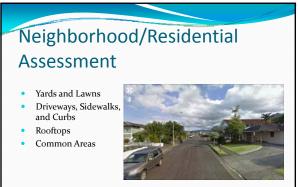
Pacific Island Institute Session C:Watershed Assessments

Look on N	√aps for	
Survey Site	Impacts You'll Find	Restoration Options
2. Neighborhoods	•Trash •Excess runoff •Household pollutants •Fertilizer usage	•Cleanups •Retrofits •Education

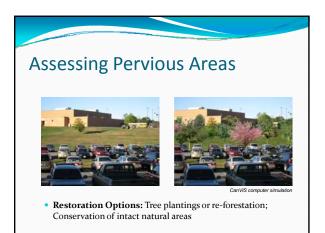
Survey Site	Impacts You'll Find	Restoration Options
3. Large parking lots/roofs	 Excess runoff Hot runoff Bad waste mngmt Fertilizer/herbicide 	 Retrofits Trees Pollution prevention Nutrient mngmt

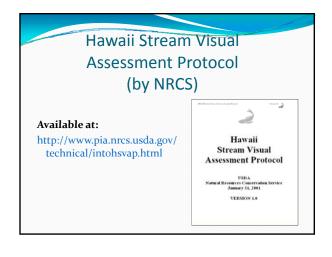
	and the second se
Field Assessment Methods	
Tomorrow we will practice	
 Stream assessment 	
 Stormwater retrofit investigation 	
 Hotspot site investigation 	
Neighborhood/residential assessment	
Others:	
 Pervious/natural area assessments 	
 Illicit discharge detection 	

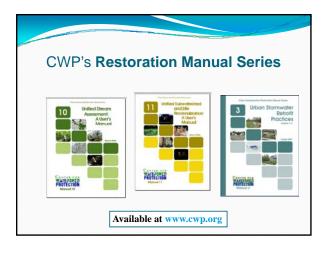
Pacific Island Institute Session C:Watershed Assessments

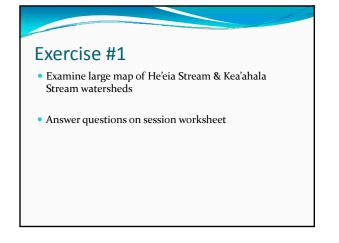


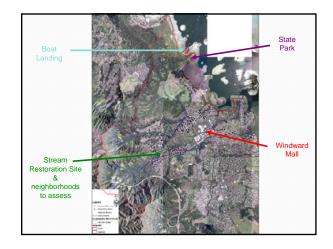
• Restoration Options: Stormwater management practices in locations where stormwater controls did not previously exist or were ineffective






Pacific Island Institute Session C:Watershed Assessments




 Restoration Options: Pet waste containers & outreach; Nomow along streams; Downspout disconnection; Erosion repairs

Session D: Regulations & Policies

2011 Pacific Island Watershed Institute

Description: A brief review of the overlapping federal/jurisdictional regulations and policies that affect watershed planning and outcomes. Much of the session will about local (or island-wide) codes and policies that are needed to support successful watershed planning and implementation. One of the objectives is to identify gaps that participants can work on during the Island Team Sessions.

Speakers:

- David Hirschman, Center for Watershed Protection
- Margaret Aguilar, Guam Environmental Protection Agency

Topics/Notes:

1. Why local/island codes are important to supplement existing federal regulations.

2. Guided activity to fill out questionnaire. From a local regulations standpoint, identify your island's strong points and gaps to work on.

3. Case study about Guam Erosion Control and Stormwater Regulations.

Quick Program Self-Assessment

The self-assessment is designed to help you evaluate the current status of your island program regulations and policies for watershed and stormwater management.

What program elements are you doing a great job with? Which ones need work? What are the major program gaps? This self-assessment will help you begin answering these questions. The assessment is not exhaustive, but just hits the high points for each program category.

To fill out the self-assessment, read the question and possible responses, and assign a number between 1 and 10 that best reflects the status of your program. The scale is a continuum, so you can select any number between 1 and 10. When you are done, tally your points, and see how you score on a 100-point scale. Use the results to brainstorm the top program strengths and gaps on the last page. This brainstorming can carry over to your island team work sessions later in the day.

For a more comprehensive assessment tool for coastal natural resources programs, see the Center for Watershed Protection's *Coastal Community Watershed Management Checklist* (part of the Coastal Plain Watershed Information Center):

www.cwp.org (click on "Coastal Plain Watershed Information Center on left side, then scroll to bottom of page) OR go directly to: <u>http://www.cwp.org/component/content/article/39/112-coastal-plain-watershed-information-center.html</u>

The Coastal Community Watershed Management Checklist provides a comprehensive self-assessment for a variety of issues, including:

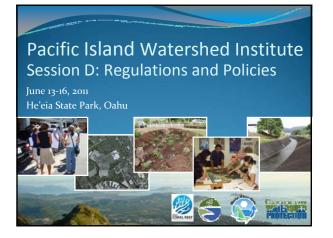
- Land Use Planning
- Hazard Mitigation Planning
- Pollution Sources
- Shoreline Management
- Site Design
- Stormwater Management

The tool is geared to the Atlantic Coastal Plain, but many of the resources and assessments are applicable to the Pacific Islands.

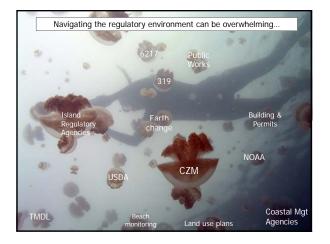
For the topic of post-construction stormwater management, a more comprehensive self-assessment can be obtained as part of *Managing Stormwater in Your Community: A Guide for Building an Effective Post-Construction Program.* There is a downloadable tool that steps through all of the programmatic aspects of a post-construction stormwater program:

www.cwp.org/postconstruction

	Quick Program Self Assessment										
Program Question			Ca	tegory	2		Categ	gory 3		Your Notes	
1. Land Use Plannir	ng & Lan	d Cons	ervatio	n							
1.1. Is there a zoning code that directs development to most suitable places and protects sensitive resources?	Zoning a b	ng a bad word on our island We have zoning, but it does a poor job of directing development to suitable locations			Zoning does exist to create incentives for development in suitable locations and controls density in sensitive areas			ent in ntrols			
points	1	2	3	4	5	6	7	8	9	10	
1.2. Is there a program (public or private) to identify and protect high value conservation lands?	No			Some land is	protected		There is protect s			m to	
points	1	2	3	4	5	6	7	8	9	10	
2. Development Co	des & Sit	te Desiç	gn								
2.1. Do development codes promote less impervious cover and less site disturbance?	Developme address imp amount of I	pervious co	ver or the	These things a areas or on a c			Our code design ar developn have bee	nd low-ir nent, and	npact		
points	1	2	3	4	5	6	7	8	9	10	
2.2. Are there buffers or setbacks from the coastline, waterways, and/or drinking water wellheads?	No buffers	or setbacks		Buffers and so situations or o basis			We have buffers a the follow waterway	nd setba	cks for a astline, v	at least of	
points	1	2	3	4	5	6	7	8	9	10	


3. Construction Site	e Stormw	vater (E	rosion	& Sedime	ent Cor	ntrol)	ľ				
5.1. Does your program have legal authority and tools to control stormwater from construction sites during active construction ?	Some loose exist, but no application	o practical	-	We have reg sites still can having few controls	n get away	with	us autho design, i	e good reg rity to en installatic ance of E	sure ade on, and	-	
points	1	2	3	4	5	6	7	8	9	10	
5.2. Is there adequate inspection and enforcement of ESC application on site	No, enforce almost all c		cking in	We have an enforcemen complaint-d spotty, and	t program, riven, enfo	but it is prcement is	sites and	ons take j l enforcei nen neces	nent acti	llmost all ons are	
points	1	2	3	4	5	6	7	8	9	10	
4. Post-Constructio	n Storm	water N	lanager	nent							
4.1. Does your program have the legal authority and tools to control post-construction stormwater (after the active construction phase)?	No post-construction regulations, standards, or design criteriaWe have regulations and standards, but they are not widely utilized/implemented						ge s				
points	1	2	3	4	5	6	7	8	9	10	
4.2. Are post-construction requirements and BMP standards used for public works and transportation projects?	Generally, incorporate manage sto	BMPs to		Post-constru applied on a and generall standards	case-by-c	ase basis,	most stri stormwa	rojects ro ingent po iter stand private pr	st-constr ards and	designs,	
points	1	2	3	4	5	6	7	8	9	10	
5. Pollution Sources	S										
5.1. Are there standards for septic systems (e.g., minimum setbacks, reserve drainfields, minimum depth to bedrock or water table)?	Not really. size, which small			There are so they need to improved be systems are	be update	d and	water fea table. O	e standar atures, be n-site system d to boost cy	edrock, a stems are	nd water	
points	1	2	3	4	5	6	7	8	9	10	
5.2. Do Marinas employ good practices to control pump-outs, fueling, etc. – such as the Clean Marina Program?	Generally n	not.		A few pract basis, but th exceptions.				Clean M		actices as ogram or	
points	1	2	3	4	5	6	7	8	9	10	
	& Policies, S										Total Points Out of 100

Major Program Strengths:


1.	
2.	
3. <u>-</u>	
4	
5.	

Major Program Gaps/Things to Work On:

1.	
2.	
3.	
4.	
5.	

#1 Land Use Planning & Land Conservation

- Development in suitable locations (e.g. public utilities) – provide incentives
- ID most sensitive areas
- Limit growth in most sensitive areas
- Protect sensitive areas

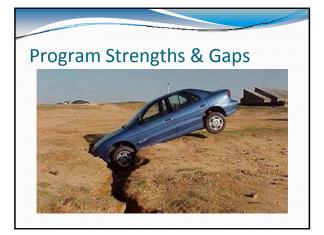
#2 Development Codes & Site Design

- Minimize impervious cover & site distrubance
- Compact development, open space, skinny streets
- Buffers/setbacks from coastline, wetlands, waterways, drinking water source areas

#3 Construction Site Stormwater (Erosion & Sediment Control) Erosion & Sediment Control standards and regulations Design tools, review checklists Authority to inspect/enforce (Adequate staff) Training

#4 Post-Construction Stormwater Management

- Post-Construction stormwater standards and regulations
- Authority to review plans, inspect, enforce
- Application to public works & transportation projects
- Allow/authorize low-impact development & innovative practices
- (Adequate staff)



Coastal Com	nmunity Watersh	ed		
Managemer	at Chacklist			
wanagemer				
Shoreline	Management			
What is Shoreline Management?				
to much below come to many concentry				
Repetine Management product interprotectmental place	ning for development along the ware's edge, identifying,			
Notetine Management involves interproteinment plant monitoring, and readeling future deteriore charges; delo	reating ensure hazard areas; and implementing appropriate			
Receive Management involves incorpore, menod plana monitoring, and vaniding future densities charges, deli- rection control solutions. These are significant overlaps:	reating summer hazard areas, and implementing appropriate with results' actionest mensionent insertions fund a stirities			-
Neureline Management involves involves interpretational plana menaturing, and randol og fattere detterlane stranger, dele stranon control sekterions. There are significant worklaps effective second sekterem witchere sould's to memoryli, sin	waiting environ hardwait and any and implementing appropriate with research and any appropriate to a second s	Points for	Total Possible	Т
Structure Management involves interpretational plana neositoring and readeling future densities charges; dele- troscon control solutions. There are against an eveloper advertise research indicates any boy and/or transport), size and property future densities charges. Thereing control	reating resource bactand are an and implementing appropriate			
Neureline Management involves involves interpretational plana menaturing, and randol og fattere detterlane stranger, dele stranon control sekterions. There are significant worklaps effective second sekterem witchere sould's to memoryli, sin	nating results battact areas as inclinationality appropriate phonon and advances areas and inclination for the state of the second second second results and the state of the second second second second second second second second CAR USE FAINING	each	Possible	
Structure Management involves interpretational plana neositoring and readeling future densities charges; dele- troscon control solutions. There are against an eveloper advertise research indicates any boy and/or transport), size and property future densities charges. Thereing control	vertex means hated area; and inclinements are to it is it is in a second s	each	Possible	
Notetime Management involves immporenzamental plana monitoring, and socied on future shoredue stranger, dele- tronose commissionismi. There are magnificant reveluper alleritus soored unfinitent surplays and/on it associet, sin and propering future disariane charges. Increase control is audiciant disary, have insportant implications for wat	variate reveals hazad array and incrementing supregrate Viewee and the second	each Question	Possible	
Notetime Management involves immporenzamental plana monitoring, and socied on future shoredue stranger, dele- tronose commissionismi. There are magnificant reveluper alleritus soored unfinitent surplays and/on it associet, sin and propering future disariane charges. Increase control is audiciant disary, have insportant implications for wat	ending events hatsal area; and incidentating appropriate ALTEGORVOURSTICM AND OF FACING ALTER OF INCIDENT AND OF FACING ALTER OF INCIDENT ALTER	each Question	Possible	
Notetime Management involves immporenzamental plana monitoring, and socied on future shoredue stranger, dele- tronose commissionismi. There are magnificant reveluper alleritus soored unfinitent surplays and/on it associet, sin and propering future disariane charges. Increase control is audiciant disary, have insportant implications for wat	renerg results. National arrays, and insightenerging appropriate renergy and an array and insightenerging appropriate renergy and an array and insightenergy and an array of a renergy and arrays and arrays and arrays and arrays and arrays and renergy and arrays and arrays and arrays and arrays and arrays and renergy and arrays and arrays and arrays and arrays and arrays and renergy and arrays and arrays and arrays and arrays and arrays and renergy and arrays and arrays and arrays and arrays and arrays and renergy and arrays and arrays and arrays and arrays and arrays and renergy and arrays and arrays and arrays and arrays and arrays and renergy and arrays and arrays and arrays and arrays and arrays and renergy and arrays and arrays and arrays and arrays and arrays and arrays and renergy and arrays and arrays and arrays and arrays and arrays and arrays and renergy and arrays and arrays and arrays and arrays and arrays and arrays and renergy and arrays and arrays and arrays and arrays and arrays and arrays and renergy and arrays and renergy and arrays and a	each Question	Possible	
Notetime Management involves immporenzamental plana monitoring, and socied on future shoredue stranger, dele- tronose commissionismi. There are magnificant reveluper alleritus soored unfinitent surplays and/on it associet, sin and propering future disariane charges. Increase control is audiciant disary, have insportant implications for wat	ending events hatsal area; and incidentating appropriate ALTEGORVOURSTICM AND OF FACING ALTER OF INCIDENT AND OF FACING ALTER OF INCIDENT ALTER	each Question	Possible	
Notetime Management involves immporenzamental plana monitoring, and socied on future shoredue stranger, dele- tronose commissionismi. There are magnificant reveluper alleritus soored unfinitent surplays and/on it associet, sin and propering future disariane charges. Increase control is audiciant disary, have insportant implications for wat	renerg results. National arrays, and insightenerging appropriate renergy and an array and insightenerging appropriate renergy and an array and insightenergy and an array of a renergy and arrays and arrays and arrays and arrays and arrays and renergy and arrays and arrays and arrays and arrays and arrays and renergy and arrays and arrays and arrays and arrays and arrays and renergy and arrays and arrays and arrays and arrays and arrays and renergy and arrays and arrays and arrays and arrays and arrays and renergy and arrays and arrays and arrays and arrays and arrays and renergy and arrays and arrays and arrays and arrays and arrays and renergy and arrays and arrays and arrays and arrays and arrays and renergy and arrays and arrays and arrays and arrays and arrays and arrays and renergy and arrays and arrays and arrays and arrays and arrays and arrays and renergy and arrays and arrays and arrays and arrays and arrays and arrays and renergy and arrays and arrays and arrays and arrays and arrays and arrays and renergy and arrays and renergy and arrays and a	each Question	Possible	
Notetime Management involves immpoventamental plana monitoring, and socied on future shoredue strategies dele- tronose commissionismi. There are magnificant revelupes alleritars soon al unificatent antiphose mal/on it anaportil, sin and properting future distantion changes. Intronus control in additional distory, have insportant implications for wat	order and the second and and and and and and and and and a	each Question	Possible	
Notetime Management involves immpoventamental plana monitoring, and socied on future shoredue strategies dele- tronose commissionismi. There are magnificant revelupes alleritars soon al unificatent antiphose mal/on it anaportil, sin and properting future distantion changes. Intronus control in additional distory, have insportant implications for wat	And Larry, and Angenering groups and a second	each Question	Possible	
Notetime Management involves immpoventamental plana monitoring, and socied on future shoredue strategies dele- tronose commissionismi. There are magnificant revelupes alleritars soon al unificatent antiphose mal/on it anaportil, sin and properting future distantion changes. Intronus control in additional distory, have insportant implications for wat	order and the second and and and and and and and and and a	each Question	Possible	
Notetime Management involves immpoventamental plana monitoring, and socied on future shoredue strategies dele- tronose commissionismi. There are magnificant revelupes alleritars soon al unificatent antiphose mal/on it anaportil, sin and properting future distantion changes. Intronus control in additional distory, have insportant implications for wat	And Larry, and Angenering groups and a second	each Question d	Possible	
Notetime Management involves immpoventamental plana monitoring, and socied on future shoredue strategies dele- tronose commissionismi. There are magnificant revelupes alleritars soon al unificatent antiphose mal/on it anaportil, sin and properting future distantion changes. Intronus control in additional distory, have insportant implications for wat	A start a start, and start and startand start and start and start and start and start and start and s	each Question d	Possible	3
Notetime Management involves immpoventamental plana monitoring, and socied on future shoredue strategies dele- tronose commissionismi. There are magnificant revelupes alleritars soon al unificatent antiphose mal/on it anaportil, sin and properting future distantion changes. Intronus control in additional distory, have insportant implications for wat	And the second status (a server, see the end server status queues the second status (a server, see the second status (a server)) and second status (a server) and and a server) and and status (a server) and status (a server) and status (a server) and status (a server) and and a server) and and status (a server) and a server) and and status (a server) and a server) and a server) and and a server) and and status (a server) and a server (a server) and a server) and a server) and a server) and a server (a server) and a server) and a server (a server) and a server) and a server) and a server) and a server (a server) and a server) and a server (a server) and a server) and a server) and a server (a server) and a	each Question d	Possible	
Notetime Management involves immpoventamental plana monitoring, and socied on future shoredue strategies dele- tronose commissionismi. There are magnificant revelupes alleritars soon al unificatent antiphose mal/on it anaportil, sin and properting future distantion changes. Intronus control in additional distory, have insportant implications for wat	And a constraint of the second sec	each Question d	Possible	
Notetime Management involves immpoventamental plana monitoring, and socied on future shoredue strategies dele- tronose commissionismi. There are magnificant revelupes alleritars soon al unificatent antiphose mal/on it anaportil, sin and properting future distantion changes. Intronus control in additional distory, have insportant implications for wat	And the second status (a server, see the end server status queues the second status (a server, see the second status (a server)) and second status (a server) and and a server) and and status (a server) and status (a server) and status (a server) and status (a server) and and a server) and and status (a server) and a server) and and status (a server) and a server) and a server) and and a server) and and status (a server) and a server (a server) and a server) and a server) and a server) and a server (a server) and a server) and a server (a server) and a server) and a server) and a server) and a server (a server) and a server) and a server (a server) and a server) and a server) and a server (a server) and a	each Question d	Possible	
Notetime Management involves immpoventamental plana monitoring, and socied on future shoredue strategies dele- tronose commissionismi. There are magnificant revelupes alleritars soon al unificatent antiphose mal/on it anaportil, sin and properting future distantion changes. Intronus control in additional distory, have insportant implications for wat	A strange of the s	each Question d	Possible	
Notetime Management involves immpoventamental plana monitoring, and socied on future shoredue strategies dele- tronose commissionismi. There are magnificant revelupes alleritars soon al unificatent antiphose mal/on it anaportil, sin and properting future distantion changes. Intronus control in additional distory, have insportant implications for wat	variant events have a larger, with elevanting synapsise variant events and the second synapsise of the second synapsis of the second syna	each Question d	Possible	

Coastal Community Watershed Management Checklist • Land Use Planning

- Hazard Mitigation Planning
- Pollution Sources
- Shoreline Management
- Site Design
- Stormwater Management
- http://www.cwp.org/component/content/article/39/1

Session E: Watershed Assessment Field Trip

ALCO ALCO

2011 Pacific Island Watershed Institute

Description: Practice various field assessment techniques used to identify watershed restoration and protection opportunities such as stream assessments, stormwater retrofitting, and pollution prevention surveys. We'll also visit a nearby stream restoration site.

Agenda:8:00Meet at He'eia State Park8:45-11:00Assessments at Windward Mall11:00-12:30Stream Restoration and Neighborhood Assessments12:30Return to He'eia

Driving Directions:

From He'eia State Park to Windward Mall (8:15 am)

- Take a LEFT out of Park entrance, onto Kamehameha Hwy
- Go 1.5 miles and turn RIGHT onto Haiku Rd.
- Take first LEFT onto Alaloa St.
- Take first LEFT into mall parking lot & park close to cemetery.


From Windward Mall to Stream Restoration site (11:00am)

- Take RIGHT out of parking lot, onto Alaloa St.
- At first intersection, take LEFT onto Haiku Rd.
- Go 0.9 miles and follow road as it veers to the left.
- Take a RIGHT onto Kuneki St.
- At a "T" in the road turn right.
- Park in grassy area on your left or continue down paved road to next parking area.

From Stream Restoration site back to He'eia State Park (12:30)

- Take LEFT out of parking lot, onto Kuneki St.
- Turn Left on Kahuhipa, right on to Haiku Rd.
- Go 1.2 miles (pass the Windward Mall)and take LEFT onto Kamehameha Hwy (Rt. 830)
- Go 1.5 miles and turn RIGHT into He'eia State Park entrance.

Notes:

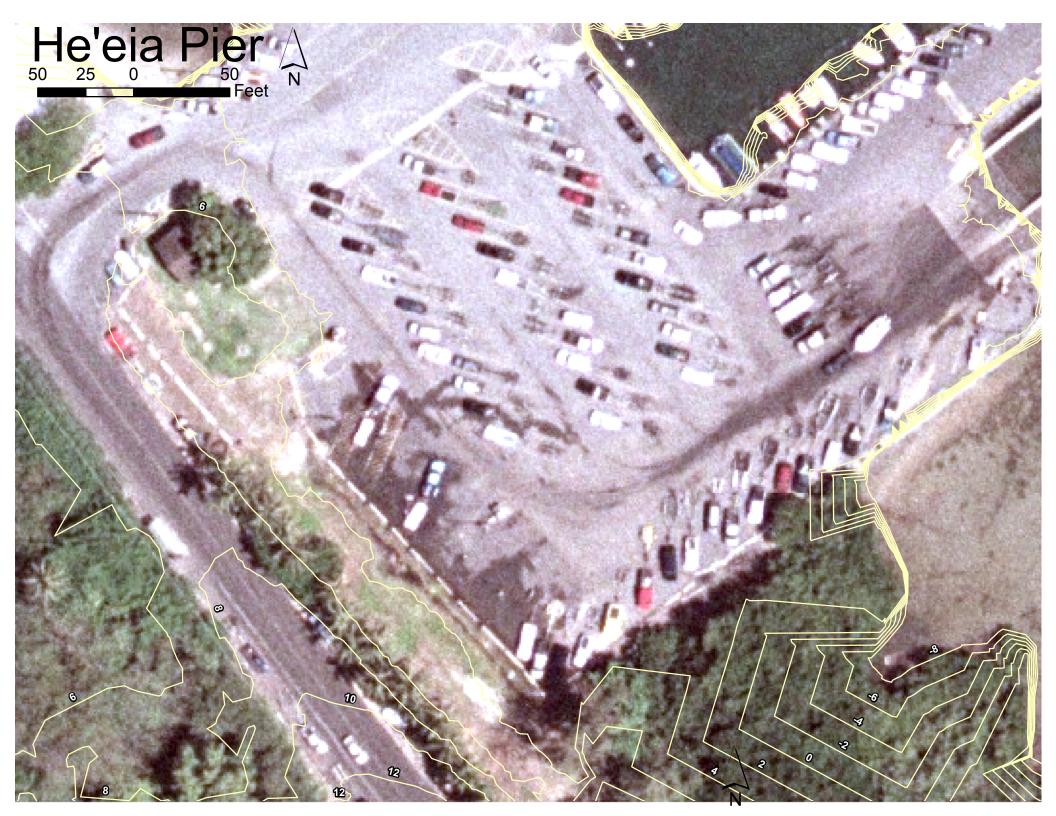
He'eia Pier **Pacific Island Watershed Institute** Session J:Stormwater and Pollution Prevention Field Trip

6

TOP

A BEAR

A


0

50

100

N

100 Feet

Watershed Assessment Resources

Stormwater Retrofitting

- *Urban Subwatershed Restoration Manual No. 3: Urban Stormwater Retrofit Practices (Version 1.0). Published by Center for Watershed Protection. http://www.cwp.org/categoryblog/92-urban-subwatershedrestoration-manual-series.html#Manual%203
- CWP You-Tube video on Stormwater Retrofitting Reconnaissance (Part 1): <u>http://www.youtube.com/watch?v=tHvuzReiDHQ</u>
- CWP You-Tube video on Stormwater Retrofitting Reconnaissance (Part 2): <u>http://www.youtube.com/watch?v=Q-9j2RgLW3I&feature=related</u>
- CWP You-Tube video on Stormwater Retrofitting Reconnaissance (Part 3): <u>http://www.youtube.com/watch?v=vmjyskDxzuU&feature=related</u>

Stream Assessments

- Hawaii Stream Visual Assessment Protocol (Version 1.0). Available from Natural Resources Conservation Service. <u>http://www.nrcs.usda.gov/technical/ECS/aquatic/svapfnl.pdf</u>
- *Unified Stream Assessment: A User's Manual (Version 2.0). Center for Watershed Protection. <u>http://www.cwp.org/documents/cat_view/68-urban-subwatershed-restoration-manual-series/87-manual-</u> <u>10-unified-stream-assessment-a-users-manual-.html</u>
- Rapid Watershed Assessments in Pacific Islands Area. Natural Resources Conservation Service. http://www.pia.nrcs.usda.gov/technical/rwa.html

Neighborhood/Residential Assessments

*Unified Subwatershed and Site Reconnaissance: A User's Manual (Version 2.0) – *Chapter 3*. Center for Watershed Protection. <u>http://www.cwp.org/documents/cat_view/68-urban-subwatershed-restoration-manual-series/88-manual-11-unified-subwatershed-and-site-reconnaissance-a-users-manual.html</u>

Hotspots Assessments

- *Unified Subwatershed and Site Reconnaissance: A User's Manual (Version 2.0) *Chapter 4*. Center for Watershed Protection. <u>http://www.cwp.org/documents/cat_view/68-urban-subwatershed-restoration-</u> manual-series/88-manual-11-unified-subwatershed-and-site-reconnaissance-a-users-manual.html
- * Pollution Source Control Practices (Version 2.0). Center for Watershed Protection. <u>http://www.cwp.org/documents/cat_view/68-urban-subwatershed-restoration-manual-series.html</u>

*Register for a login name/password on <u>www.cwp.org</u> to download these free publications.

PIWI

Hotspot/Pollution Prevention

WATERSHED:	DATE: // SITE ID:				
A. SITE DATA AND BASIC CLASSIFICATIO	DN				
Site Name/Contact:		☐ Institutional c ☐ Transport-Related ility			
	 Basic Description of Operation: 				
SIC code (if available): NPDES permit?		[INDEX*		
B. VEHICLE OPERATIONS N/A (Skip to part C) Observed Pollution					
B1. Types of vehicles: Fleet vehicles	School buses Other:				
B2. Approximate number of vehicles:					
): Maintained Repaired Recycled Fueled Was	hed Stored	0		
B4. Are vehicles stored and/or repaired out Are these vehicles lacking runoff diversion			0		
B5. Is there evidence of spills/leakage from			0		
B6. Are uncovered outdoor fueling areas particular			0		
B7. Are fueling areas directly connected to	storm drains? Y N Can't Tell		0		
B8. Are vehicles washed outdoors? Y Does the area where vehicles are washed d		Tall	0		
C. OUTDOOR MATERIALS N/A (Skip)		Observed Pollution	9		
C1. Are loading/unloading operations press		Observeu i oliution			
If yes, are they uncovered <i>and</i> draining tow		t Tell	0		
C2. Are materials stored outside? Y N Can't Tell If yes, are they Liquid Solid Description: Where are they stored? grass/dirt area concrete/asphalt bermed area					
C3. Is the storage area directly or indirectly	y connected to storm drain (circle one)? \Box Y \Box N	Can't Tell	0		
C4. Is staining or discoloration around the	area visible? 🗌 Y 📄 N 📄 Can't Tell		0		
C5. Does outdoor storage area lack a cover	? Y N Can't Tell		0		
C6. Are liquid materials stored without sec	ondary containment? Y N Can't Tell		0		
C7. Are storage containers missing labels of	or in poor condition (rusting)? \Box Y \Box N \Box Can	't Tell	0		
D. WASTE MANAGEMENT N/A (Skip	to part E)	Observed Pollution	?		
D1. Type of waste (<i>check all that apply</i>):	Garbage Construction materials Hazard	ous materials	0		
evidence of leakage (stains on ground)		ndition Leaking or	0		
D3. Is the dumpster located near a storm du If yes, are runoff diversion methods (b			0		
E. PHYSICAL PLANT N/A (Skip to part	t F)	Observed Pollution	?		
• • • •	yrs. Condition of surfaces: Clean Staine arge to storm drains (staining/discoloration)? Y		00		
		Breaking up	0		
E3. Do downspouts discharge to imperviou Are downspouts directly connected			0		
	r construction (stains leading to storm drain)? \Box Y		0		

F. TURF/LANDSCAPING AREAS N/A (skip to part G)	Observed Pollution?					
F1. % of site with: Forest canopy% Turf grass% Landscap						
F2. Rate the turf management status: High Medium Low	0					
F3. Evidence of permanent irrigation or "non-target" irrigation \Box Y	N Can't Tell					
F4. Do landscaped areas drain to the storm drain system?	N Can't Tell					
F5. Do landscape plants shed organic matter (leaves, grass clippings) on adjacent	impervious surface? Y N Can't Tell					
F6. Is there an adequate vegetated buffer between site and adjacent resource	e areas? Y N NA					
G. STORM WATER INFRASTRUCTURE N/A (<i>skip to part H</i>)	Observed Pollution?					
G1. Are storm water treatment practices present? \Box Y \Box N \Box Unknown If yes, please describe:						
If so, are they infiltrating untreated stormwater? Y N Unknown						
G2. Are private storm drains located at the facility? Is trash present in gutters leading to storm drains? If so, complete the index below.						
Index Rating for Accum						
CleanSediment123Organic material123Litter123G3. Catch basin inspection – Record SSD Unique Site ID here:	Filthy 4 5 4 5 4 5 4 5 Condition: Dirty					
H. INITIAL HOTSPOT STATUS						
H. INITIAL HOTSPOT STATUS Index Alternative: Potential pollutants associated with: Vehicular operations (fueling, storage, maintenance) Waste management (dumping) Outdoor material storage (uncovered, leaking, no 2nd containment) Landscaping (over fertilizing, irrigation) Building/parking lot maintenance (washdowns) Other:						
INDEX RESULTS Not a hotspot (fewer than 5 circles and no boxes checked) Confirmed hotspot (10 to 15 circles and/or 1 box checked) Severe	ial hotspot (5 to 10 circles but no boxes checked) hotspot (>15 circles and/or 2 or more boxes checked)					
I. RECOMMENDED ACTION						
Follow-up Action: Refer for immediate enforcement Suggest follow-up on-site inspection or review of SWPPP Test for illicit discharge Include in future education effort Catchbasin cleaning or street sweeping Relocate dumpsters Provide secondary containment On-site retrofit Install spill response measures Other:	Severity of Problem: Low Medium High Describe Conditions:					

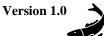
Notes:

PIWI

Site Name/ID: _____

RESIDENTIAL

Watershed: _____



Date: _____

Assessed by: _____

EXISTING CONDITIONS
Homeowners Association? No Yes Unknown If yes, name and contact information:
Main Road Names:
Approximate Neighborhood Area (acres) # of lots (# or % undeveloped) Single Family Attached (Duplexes, Row Homes) $< \frac{1}{8}$ $\frac{1}{4}$ $\frac{1}{3}$ $\frac{1}{3}$ acre Multifamily (Apts., Condos) Single Family Detached $< \frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{2}$ $1 > 1$ acre Other
Index of Infill, Redevelopment, and Remodeling 🗌 No Evidence 🗌 <5% of existing units 🗍 5-10% 🗌 >10%
Waste water Management? Public sewer On-site septic Small package plant Problems observed with septic systems? No Yes (describe):
AVERAGE ROAD CONDITION Pavement: Type All Paved mixed, mostly paved mixed, mostly unpaved all unpaved Condition Good/mostly good (new, few areas requiring regrading or maintenance) Some road sections need attention (minor erosion, pavement repair needed, limited) Significant maintenance issues (most of road network in bad shape) Drainage: Type Curb/gutter Mixed, mostly curbed Mixed, mostly open section Open drainage Drain Inlets/Catch basins: None Clean Blocked Other: Waterbars/dips/crossdrains: None Functioning Need maintenance Other: Ditches: None Stable Eroded Full of thick vegetation Other: Discharge locations: Stable Some erosion Eroded Other:
Existing Stormwater BMPs on site? Unknown No Yes, describe:
Average Lot Cover: % bare % turf % landscape (include trees) % rooftop % driveway Average Driveway: Impervious Pervious Eroded Drain to road Too variable Evidence of rooftop or driveway runoff to road/drainage network?: No Yes, describe: Evidence of residential encroachment on riparian/wetland buffer? No Yes, describe: Average Lawn: highly maintained Imoderate low maintenance
Evidence of Residential Pollution? Severity: Low Medium High Limited Likely Observed for sediment loading Limited Likely Observed for oil/grease Describe source: Limited Likely Observed for nutrient loading Describe source: Limited Likely Observed for nutrient loading Describe source: Limited Likely Observed for nutrient loading Describe source: Limited Likely Observed for other: Describe source: PROPOSED RESTORATION ACTIVITIES Severity: Low Severity: Low
Neighborhood-wide Actions: Better lawn/landscaping practices? Drainage infrastructure maintenance Street ROW retrofit Existing BMP retrofit Drainage infrastructure maintenance/repair Septic improvements Other action(s): Description Description

Narrative description/ Sketch:

SCORING SHEET FOR THE ELEMENTS

1. TURBIDITY (indicator of present erosion)

Condition	Score
Very clear; objects visible at depth to the bottom.	2.0 - 1.5
Moderately turbid	1.0-0.5
Very turbid	0

2. PLANT GROWTH (indicator of eutrophication)

Condition	Score
Water clear with no significant algal scum or microalgae; rocks may be slimy but algae not obvious	2.0 - 1.5
Large clumps of macroalgae present, or distinctive green/brown scums visible on bottom or sides of stream	1. 0 – 0.5
Water distinctly green or pea green; or channel choked with grasses	0

3. CHANNEL CONDITION

Condition	Score
Natural Channel	2.0 – 1.8
Channelized by humans but natural walls and bottom	1.7 – 1.2
Walls Hardened (e.g. concrete, riprap)	1.1 – 0.6
Walls and Bottom Hardened	0.5 – 0

4. CHANNEL FLOW ALTERATION

Condition	Score	
No withdrawals, diversions, or stormwater/ag water discharge entering segment.	2.0 – 1.8	
Temporary, Intermittent withdrawals occurring within segment.	1.7 – 1.2	
Permanent, Intermittent withdrawals or stormflow inputs (e.g. culverts occurring within segment.	1.1 – 0.6	
Temporary, Constant withdrawals occurring within segment.	0.5 – 0.2	
Permanent, Constant withdrawals occurring within segment.	0 – 0.2	

5. PERCENT EMBEDDEDNESS

Condition	Score
< 10%	2.0
11 – 25 %	1.5 – 1.0
26 – 50 %	0.9 – 0.5
50 – 75 %	0.4 – 0.2
Completely sedimented in (includes hardpan sedimentation)	0

6. BANK STABILITY (total, both sides)

Condition	Score
> 90% Stable (not bare or erodable)	2.0
75 to 89% Stable (not bare or erodable	1.5 – 1.9
50 to 74% Stable (not bare or erodable)	1.4 – 1.0
25 to 50% Stable (not bare or erodable)	0.9 – 0.1
<25% Stable (not bare or erodable)	0

7. CANOPY / SHADE

Condition	Score
Mixed canopy, 20 - 80% cover	2.0 - 1.6
Closed but mixed canopy, >80% cover	1.5–1.0
Closed monotypic canopy >80% cover	0.9 – 0.5
Open canopy, 0- 19% cover	0

8. RIPARIAN CONDITION

Condition	Score
Riparian area same width as floodplain, diverse vegetation, or stream is naturally incised, stable banks. Undisturbed.	2.0 – 1.8
Riparian area width at least two channel widths wide, diverse vegetation, or stream is naturally incised. Minimal Degradation	1.7 – 1.0
Riparian area width at least one channel width wide, or stream is naturally incised, riparian area is somewhat degraded. Regularly grazed, cropped or other disturbance.	0.9 – 0.5
Severely degraded riparian area, less than one channel width wide.	0.4 – 0.2
Little to no riparian vegetation, dirt-lined or fully channelized and lined.	0

9. HABITAT AVAILABLE FOR NATIVE SPECIES

Condition	Score
5 habitat types available	2.0
4 habitat types available	1.9 – 1.8
3 habitat types available	1.7 – 1.0
2 habitat types available	0.5 – 0.2
1 habitat type available	0

Habitat types: (1) seeps/springs (2) pools (3) runs (4) riffles (5) cascades

10. LITTER/TRASH (indicator of urban/human influence)

Condition	Score
No litter or trash is present.	2.0 - 1.8
Litter or trash is evident but not prominent.	1.0-0.5
Abundant trash, unsanitary wastes, eg. animal	0
carcass or excrement, diapers, or many dead fish.	

SCORING DATA SHEET

Date		Time		Weather	
Stream Name		Reach ID			
	Segment #1	Segment #2	Segment #3	Segment #4	Segment #5
Stream Type				Ŭ	Ŭ
Segment Length (ft or m)					
Temperature					
Elevation					
Substrate	1234 %	1234 %	1234 %	1234 %	1234 %
Silt/clay					
Sand					
Gravel					
Cobble					
Rock					
Boulder					
Bedrock or Concrete					
Embeddedness %					
Bank Vegetation % - look	ing downstream, I	eft bank / right bank			
Trees	j	j			
Shrubs					
Herbaceous					
Leaf Litter					
None (bare)					
Avg % canopy/shade					
Avg Width					
_					
Velocity and Depth	Į				
Velocity and Depth Flow Status:		high/normal/low	high/normal/low	high/normal/low	high/normal/low
Flow Status:	high/normal/low	high/normal/low	high/normal/low	high/normal/low	high/normal/low
Flow Status: Flow (cfs) or (cms)		high/normal/low	high/normal/low	high/normal/low	high/normal/low
Flow Status:		high/normal/low	high/normal/low	high/normal/low	high/normal/low
Flow Status: Flow (cfs) or (cms) Sketch Channel cross-section, include low, normal, and high		high/normal/low	high/normal/low	high/normal/low	high/normal/low
Flow Status: Flow (cfs) or (cms) Sketch Channel cross-section, include low, normal, and high flow lines and existing		high/normal/low	high/normal/low	high/normal/low	high/normal/low
Flow Status: Flow (cfs) or (cms) Sketch Channel cross-section, include low, normal, and high flow lines and existing water level	high/normal/low			high/normal/low	high/normal/low
Flow Status: Flow (cfs) or (cms) Sketch Channel cross-section, include low, normal, and high flow lines and existing water level Score Each Element -	high/normal/low			high/normal/low	high/normal/low
Flow Status: Flow (cfs) or (cms) Sketch Channel cross-section, include low, normal, and high flow lines and existing water level Score Each Element - 1. Turbidity	high/normal/low			high/normal/low	high/normal/low
Flow Status: Flow (cfs) or (cms) Sketch Channel cross-section, include low, normal, and high flow lines and existing water level Score Each Element - 1. Turbidity 2. Plant Growth	high/normal/low			high/normal/low	high/normal/low
Flow Status: Flow (cfs) or (cms) Sketch Channel cross-section, include low, normal, and high flow lines and existing water level Score Each Element - 1. Turbidity 2. Plant Growth 3. Channel Condition	high/normal/low			high/normal/low	high/normal/low
Flow Status: Flow (cfs) or (cms) Sketch Channel cross-section, include low, normal, and high flow lines and existing water level Score Each Element - 1. Turbidity 2. Plant Growth 3. Channel Condition 4. Channel Flow Alteration	high/normal/low			high/normal/low	high/normal/low
Flow Status: Flow (cfs) or (cms) Sketch Channel cross-section, include low, normal, and high flow lines and existing water level Score Each Element - 1. Turbidity 2. Plant Growth 3. Channel Condition 4. Channel Flow Alteration 5. Percent Embeddedness	high/normal/low			high/normal/low	high/normal/low
Flow Status: Flow (cfs) or (cms) Sketch Channel cross-section, include low, normal, and high flow lines and existing water level Score Each Element - 1. Turbidity 2. Plant Growth 3. Channel Condition 4. Channel Flow Alteration 5. Percent Embeddedness 6. Bank Stability	high/normal/low			high/normal/low	high/normal/low
Flow Status: Flow (cfs) or (cms) Sketch Channel cross-section, include low, normal, and high flow lines and existing water level Score Each Element - 1. Turbidity 2. Plant Growth 3. Channel Condition 4. Channel Flow Alteration 5. Percent Embeddedness 6. Bank Stability 7. Canopy	high/normal/low			high/normal/low	high/normal/low
Flow Status: Flow (cfs) or (cms) Sketch Channel cross-section, include low, normal, and high flow lines and existing water level Score Each Element - 1. Turbidity 2. Plant Growth 3. Channel Condition 4. Channel Flow Alteration 5. Percent Embeddedness 6. Bank Stability 7. Canopy 8. Riparian Condition	high/normal/low			high/normal/low	high/normal/low
Flow Status: Flow (cfs) or (cms) Sketch Channel cross-section, include low, normal, and high flow lines and existing water level Score Each Element - 1. Turbidity 2. Plant Growth 3. Channel Condition 4. Channel Flow Alteration 5. Percent Embeddedness 6. Bank Stability 7. Canopy 8. Riparian Condition 9. Habitat Available	high/normal/low			high/normal/low	high/normal/low
Flow Status: Flow (cfs) or (cms) Sketch Channel cross-section, include low, normal, and high flow lines and existing water level Score Each Element - 1. Turbidity 2. Plant Growth 3. Channel Condition 4. Channel Flow Alteration 5. Percent Embeddedness 6. Bank Stability 7. Canopy 8. Riparian Condition 9. Habitat Available 10. Litter/Trash	high/normal/low			high/normal/low	high/normal/low
Flow Status: Flow (cfs) or (cms) Sketch Channel cross-section, include low, normal, and high flow lines and existing water level Score Each Element - 1. Turbidity 2. Plant Growth 3. Channel Condition 4. Channel Flow Alteration 5. Percent Embeddedness 6. Bank Stability 7. Canopy 8. Riparian Condition 9. Habitat Available 10. Litter/Trash Total score	high/normal/low			high/normal/low	high/normal/low
Flow Status: Flow (cfs) or (cms) Sketch Channel cross-section, include low, normal, and high flow lines and existing water level Score Each Element - 1. Turbidity 2. Plant Growth 3. Channel Condition 4. Channel Flow Alteration 5. Percent Embeddedness 6. Bank Stability 7. Canopy 8. Riparian Condition 9. Habitat Available 10. Litter/Trash Total score Total score /# of elements	high/normal/low			high/normal/low	high/normal/low
Flow Status: Flow (cfs) or (cms) Sketch Channel cross-section, include low, normal, and high flow lines and existing water level Score Each Element - 1. Turbidity 2. Plant Growth 3. Channel Condition 4. Channel Flow Alteration 5. Percent Embeddedness 6. Bank Stability 7. Canopy 8. Riparian Condition 9. Habitat Available 10. Litter/Trash Total score Total score /# of elements Rating of Average	high/normal/low			high/normal/low	high/normal/low
Flow Status: Flow (cfs) or (cms) Sketch Channel cross-section, include low, normal, and high flow lines and existing water level Score Each Element - 1. Turbidity 2. Plant Growth 3. Channel Condition 4. Channel Flow Alteration 5. Percent Embeddedness 6. Bank Stability 7. Canopy 8. Riparian Condition 9. Habitat Available 10. Litter/Trash Total score Total score /# of elements Rating of Average 1.8 - 2.0 Very High	high/normal/low			high/normal/low	high/normal/low
Flow Status: Flow (cfs) or (cms) Sketch Channel cross-section, include low, normal, and high flow lines and existing water level Score Each Element - 1. Turbidity 2. Plant Growth 3. Channel Condition 4. Channel Flow Alteration 5. Percent Embeddedness 6. Bank Stability 7. Canopy 8. Riparian Condition 9. Habitat Available 10. Litter/Trash Total score Total score /# of elements Rating of Average 1.8 - 2.0 Very High 1.5 - 1.7 High	high/normal/low			high/normal/low	high/normal/low
Flow Status: Flow (cfs) or (cms) Sketch Channel cross-section, include low, normal, and high flow lines and existing water level Score Each Element - 1. Turbidity 2. Plant Growth 3. Channel Condition 4. Channel Flow Alteration 5. Percent Embeddedness 6. Bank Stability 7. Canopy 8. Riparian Condition 9. Habitat Available 10. Litter/Trash Total score Total score /# of elements Rating of Average 1.8 - 2.0 Very High	high/normal/low			high/normal/low	high/normal/low

Notes: ie. wildlife sightings, vegetation species, etc.

Reach ID:		_ Watershed:	Date:			
RAIN IN LAST 24 HO	URS	□ Steady rain	PRESENT CONDITIONS	B □ Heavy rain	□ Steady rain	□ Intermittent
□ None	□ Intermittent		□ Clear		□ Overcast	□ Partly cloudy
SURROUNDING LAN	DUSE: Industrial	$\Box \text{ Commercial}$ se $\Box \text{ Park}$	□ Urban/Residential □ Crop	□ Suburban/Res □ Pasture	□ Forested □ Other:	
AVERAGE	CONDITIONS (check	k applicable)	REACH	SKETCH AND SIT	TE IMPACT TR	ACKING
BASE FLOW AS % CHANNEL WIDTH	□ 0-25% □25-50 %	□ 50%-75% □ 75-100%	within the survey re	of survey reach. Tra each (OT, ER, IB,SC, deemed appropriate.	UT, TR, MI) as we	
DOMINANT SUBSTR Silt/clay (fine or Sand (gritty) Gravel (0.1-2.5)	slick)	bble (2.5 –10") ulder (>10") l rock				
	□ Clear □Turbid aturally colored) □ (dyes)	-				
AQUATIC PLANTS IN STREAM	Attached: \Box none Floating: \Box none					
WILDLIFE IN OR Around Stream	(Evidence of) □ Fish □ Beave □ Snails □ Other:					
STREAM SHADING (water surface)	 ☐ Mostly shaded (2 ☐ Halfway (≥50%) ☐ Partially shaded ☐ Unshaded (< 25%) 	(<u>></u> 25%)				
CHANNEL DYNAMICS	 Downcutting Widening Headcutting 	Bed scour Bank failure Bank scour				
Unknown	Aggrading Sed. deposition	Slope failure				
CHANNEL DIMENSIONS	Height: LT bank RT bank	(ft) (ft)				
(FACING DOWNSTREAM)	Width: Bottom Top	(ft)				
T C	REACH ACCESSIBILIT					
	Fair: Forested or	Difficult. Must cross	1			
Good: Open area in public ownership,	developed area	wetland, steep slope, or				
sufficient room to		sensitive areas to get to				
stockpile materials,		stream. Few areas to stockpile available				
easy stream channel		and/or located a great				
access for heavy	Stockpile areas	distance from stream.				
equipment using existing roads or trails.	small or distant from	Specialized heavy				
-		equipment required.	4			
-	4 3 2	1				
NOTES: (biggest prob	blem you see in survey r	each)				

May modify construct aboxal an appropriate habitat at stage to all with a tage to all			OVERALL STREAM CONDI	TION	
HARTAT from the for epificane' contraction and for full contraction potential in down, mix of tange, suberged in the maintenance of scale). 20.40% mix of stable habitat multiply last iterue multiply downsus at adequate habitat multiply last iterue multiply las		Optimal	Suboptimal	Marginal	Poor
VEGETATIVE PROTECTION (scare each bank, determine sides by failing starbase, understory shrubs, or norwoody macrophyles, yealetwide, surfaces, owered by wegletalion, but one discuble for plants in or well though grazing or moxing minimal or not evident, tanks all plants all plants in or well through grazing or moxing minimal or not evident, tanks all plants all plants in the height remaining. 50-70% of the streambank surfaces covered by wegletalion, through grazing or moxing minimal or not evident, tanks all plants all plants in the height remaining. Less than 50% of the streambank surfaces covered by wegletalion, through grazing or moxing minimal or not evident, tanks and the potential plant stubble height remaining. Less than 50% of the streambank surfaces covered by wegletalion, the scheme moved to so any graet exchent more than one- hard of the potential plant stubble height remaining. Less than 50% of the streambank surfaces covered by wegletalion, the scheme moved to surfaces covered by wegletalion, on the scheme data stubble height remaining. Stubble height stubble height remaining. Banks stable height remaining. Left Bank 10 9 8 7 6 5 4 3 2 1 FLOODPLAIN CONNECTION Left Bank 10 9 8 7 6 5 4 3 2 1 FLOODPLAIN CONNECTION High flows (greater than bankfull) to enter floodplain. Banks stable wing starter consistent mont of starter consistent mont of starter consistent alight Bank 10 9 8	HABITAT (May modify criteria based on appropriate	favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags	suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may	habitat availability less than desirable; substrate frequently	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
PROTECTION suffaces and immediate riparian zone covered by registering during the vegetation in the vegeta	2	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
No. No. <td>PROTECTION (score each bank, determine sides by facing</td> <td>surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to</td> <td>covered by native vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth potential to any great extent; more than one- half of the potential plant stubble</td> <td>surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant</td> <td>5 centimeters or less in average</td>	PROTECTION (score each bank, determine sides by facing	surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to	covered by native vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth potential to any great extent; more than one- half of the potential plant stubble	surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant	5 centimeters or less in average
BANK EROSION (facing downstream) Banks stable; evidence of erosion or bank failure absent or minimal; title potential for future problems. <5% of bank affected. Grade and width stable; isolated areas of bank failure/erosion; ikely caused by a pipe outfall local scour, infrastructure Past downcutting evident, active stream widening, banks satively erosion cont threat to property or infrastructure Active downcutting; tal I both sides of the stream afast rate; rosion cont sides of the stream afast rate; rosion cont stream orbits the to enter floodplain. Active downcutting evident, active stream, obvious threat to orinfrastructure. Active downcutting; tal I both sides of the stream afast rate; rosion cont stream orbits the to enter floodplain. Active downcutting; tal I both sides of the stream or algoent use. FLOODPLAIN CONNECTION Impact Bank (information active) Stream deeply enternched. Rest downcutting evident, active and active information deeply enternched. Post stream deeply enternched. Active downcutting; tal I both formation deeply enternched. VEGETATED BUFFER WIDTH Width of buffer zone >50 feet; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, crops) have not impacted zone. Width of buffer zone 25-50 feet; human activities have impacted zone a great deal. Width of buffer zone >50 feet; human activities. Width of buffer zone >50 feet; human activities have impacted zone a great deal. Protorinal stream deeply enternched.		Left Bank 10 9	8 7 6	5 4 3	2 1 0
BANK EROSION (rlacing downstream) Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems <5% of bank affected.		Right Bank 10 9	8 7 6	5 4 3	-
Right Bank 10 9 8 7 6 5 4 3 2 1 FLOODPLAIN CONNECTION High flows (greater than bankfull) able to enter floodplain. Stream not deeply High flows (greater than bankfull) able to enter floodplain. Stream not deeply entrenched. High flows (greater than bankfull) able to enter floodplain. Stream not deeply entrenched. High flows (greater than bankfull) able to enter floodplain. Stream deeply entrenched. High flows (greater than bankfull) able to enter floodplain. Stream deeply entrenched. High flows (greater than bankfull) able to enter floodplain. Stream deeply entrenched. Importable to enter floodplain. Stream deeply entrenched. <	EROSION (facing	or bank failure absent or minimal; little potential for future problems.	areas of bank failure/erosion; likely caused by a pipe outfall, local scour, impaired riparian vegetation or	stream widening, banks actively eroding at a moderate rate; no threat to property or	Active downcutting; tall banks on both sides of the stream eroding at a fast rate; erosion contributing significant amount of sediment to stream; obvious threat to property or infrastructure.
FLOODPLAIN CONNECTION High flows (greater than bankfull) able to enter floodplain. Stream not deeply entrenched. High flows (greater than bankfull) able to enter floodplain. Stream not deeply entrenched. High flows (greater than bankfull) not able to enter floodplain. Stream deeply entrenched. 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 VEGETATED BUFFER WIDTH Width of buffer zone >50 feet; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, crops) have not impacted zone. Width of buffer zone 25.50 feet; human activities have impacted zone only minimally. Width of buffer zone 25.50 feet; human activities have impacted zone only minimally. Width of buffer zone 10-25 feet; human activities have impacted zone only minimally. Width of buffer zone 10-25 feet; human activities have impacted zone only minimally. Width of buffer zone 25-50 feet; human activities have impacted zone only minimally. 9 8 7 6 5 4 3 2 1 FLOODPLAIN VEGETATED Predominant floodplain vegetation type is mature forest Predominant floodplain vegetation type is synup forest Vegetation type is mature forest Veredominant floodplain vegetation type is synup forest <td></td> <td>Left Bank 10 9</td> <td>8 7 6</td> <td>5 4 3</td> <td>2 1 0</td>		Left Bank 10 9	8 7 6	5 4 3	2 1 0
Produprials Connection to enter floodplain. Stream not deeply entrenched. to enter floodplain. Stream not deeply entrenched. not able to enter floodplain. Stream deeply entrenched. not able to enter floodplain. Stream deeply entrenched. not able to enter floodplain. Stream deeply entrenched. Stream deeply entrenched.<		Right Bank 10 9	8 7 6	5 4 3	2 1 0
OVERALL BUFFER AND FLOODPLAIN CONDITION VEGETATED BUFFER WIDTH Width of buffer zone >50 feet; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, crops) have not impacted zone. Width of buffer zone 25-50 feet; human activities have impacted zone only minimally. Width of buffer zone 10-25 feet; human activities have impacted zone only minimally. Width of buffer zone 10-25 feet; human activities have impacted zone on ro riparian vegetation human activities. Width of buffer zone 10-25 feet; human activities have impacted zone only minimally. Width of buffer zone 10-25 feet; human activities. Width of buffer zone 10-25 feet; human ac	·	to enter floodplain. Stream not deeply	to enter floodplain. Stream not	not able to enter floodplain.	High flows (greater than bankfull) not able to enter floodplain. Stream deeply entrenched.
Vptimal Suboptimal Marginal Portional VEGETATED BUFFER WIDTH Width of buffer zone >50 feet; human activities (i.e., parking lots, roadbeds, clear-outs, lawns, crops) have not impacted zone. Width of buffer zone 25-50 feet; human activities have impacted zone only minimally. Width of buffer zone 25-50 feet; human activities have impacted zone only minimally. Width of buffer zone 25-50 feet; human activities have impacted zone only minimally. Width of buffer zone 21-25 feet; human activities have impacted zone zone a great deal. Width of buffer zone 210-25 feet; human activities have impacted zone a great deal. Width of buffer zone 210-25 feet; human activities have impacted zone a great deal. Width of buffer zone 210-25 feet; human activities have impacted zone a great deal. Width of buffer zone 210-25 feet; human activities have impacted zone a great deal. Width of buffer zone 210-25 feet; human activities have impacted zone a great deal. Width of buffer zone 210-25 feet; human activities have impacted zone a great deal. Width of buffer zone 210-25 feet; human activities have impacted zone a great deal. Width of buffer zone 210-25 feet; human activities have impacted zone a great deal. Width of buffer zone 210-25 feet; human activities have impacted zone a great deal. Width of buffer zone 210-25 feet; human activities have impacted zone a great deal. Width of buffer zone 210-25 feet; human activities have impacted zone a great deal. Width of buffer zone 210-25 feet; human activities have impacted zone a great deal. Width of buffer zone 210-25 feet; human activities have impacted zone a grea		20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
VEGETATED BUFFER WIDTH Width of buffer zone >50 feet; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, crops) have not impacted zone. Width of buffer zone 25-50 feet; human activities have impacted zone only minimally. Width of buffer zone 25-50 feet; human activities have impacted zone only minimally. Width of buffer zone 10-25 feet; human activities have impacted zone Width of buffer zone 10-25 feet; human activities have impacted zone Width of buffer zone 410 or no riparian vegetation human activities Even mix of wetland and non-wetland habitats, evidence of standing/ponded water Predominant floodplain vegetation type is shrub or old field Either all wetland or all non- wetland habitat, evidence of standing/ponded water Either all wetland or all non- wetland habitat, evidence of standing/ponded water Either all wetland or all non- wetland habitat, evidence of standing/ponded water Either all wetland or all non- wetland habitat, evidence of standing/ponded water Significant floodplain encroachment in the form of fill and development, or		OVER	ALL BUFFER AND FLOODPLA	IN CONDITION	
VECE IATED activities (i.e., parking lots, roadbeds, clear-cuts, lawns, crops) have not impacted zone. Width of buffer zone 25-50 feet; human activities have impacted zone only minimally. Width of buffer zone 10-25 feet; human activities have impacted zone only minimally. Width of buffer zone 10-25 feet; human activities have impacted zone only minimally. Width of buffer zone 10-25 feet; human activities have impacted zone only minimally. Width of buffer zone 10-25 feet; human activities have impacted zone only minimally. Width of buffer zone 10-25 feet; human activities have impacted zone only minimally. Width of buffer zone 10-25 feet; human activities have impacted zone only minimally. Width of buffer zone 10-25 feet; human activities have impacted zone only minimally. Width of buffer zone 10-25 feet; human activities have impacted zone on impacted zone. Width of buffer zone 10-25 feet; human activities have impacted zone on impacted zone. Width of buffer zone 10-25 feet; human activities have impacted zone on impacted zone. Width of buffer zone 10-25 feet; human activities have impacted zone on impacted zone. Width of buffer zone 10-25 feet; human activities have impacted zone on impacted zone. Width of buffer zone 10-25 feet; human activities have impacted zone on impacted zone. Width of buffer zone 10-25 feet; human activities have impacted zone. Width of buffer zone 10-25 feet; human activities have impacted zone. Width of buffer zone 10-25 feet; human activities have impacted zone. Width of buffer zone 10-25 feet; human activities have impacted zone. Width of buffer zone 10-25 feet; human activities have impacted zone. Width of buffer zone 10-25 feet; human activi		Optimal	Suboptimal	Marginal	Poor
Right Bank 10 9 8 7 6 5 4 3 2 1 FLOODPLAIN VEGETATION Predominant floodplain vegetation type is mature forest Predominant floodplain vegetation type is mature forest Predominant floodplain vegetation type is young forest Predominant floodplain vegetation type is young forest Predominant floodplain vegetation vegetation type is shrub or old field Predominant floodplain vegetation type is shrub or old field Predominant floodplain vegetation type is turf or crop land FLOODPLAIN HABITAT 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 FLOODPLAIN MaBITAT Even mix of wetland and non-wetland habitats, evidence of standing/ponded water 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 FLOODPLAIN HABITAT 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 FLOODPLAIN encroachment in the form of	BUFFER	activities (i.e., parking lots, roadbeds, clear-cuts, lawns, crops) have not	human activities have impacted zone	human activities have impacted	Width of buffer zone <10 feet: little or no riparian vegetation due to human activities.
FLOODPLAIN VEGETATION Predominant floodplain vegetation type is mature forest Predominant floodplain vegetation type is young forest Predominant floodplain vegetation type is young forest Predominant floodplain vegetation type is shrub or old field Predominant floodplain vegetation type is shrub or old Predominant floodplain type is turf or crop land 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 FLOODPLAIN HABITAT Even mix of wetland and non-wetland habitats, evidence of standing/ponded water Even mix of wetland and non-wetland habitats, no evidence of standing/ponded water 11 10 9 8 7 6 5 4 3 2 FLOODPLAIN HABITAT 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 FLOODPLAIN BENCROACH- No evidence of floodplain encroachment in the form of fill Minor floodplain encroachment in the form of fill material, land Minor floodplain encroachment in the form of fill material, land Minor floodplain encroachment in the form of fill material, land Minor floodplain encroachment					
FLOODFLAIN VEGETATION Predominant noodplain vegetation type is mature forest Predominant noodplain vegetation type is young forest vegetation field vegetation type is shrub or old field Predominant noodplain vegetation type is urf or crop land type is urf or crop land 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 FLOODPLAIN HABITAT Even mix of wetland and non-wetland habitats, evidence of standing/ponded water Even mix of wetland and non-wetland habitats, no evidence of standing/ponded water Either all wetland or all non- wetland habitat, evidence of standing/ponded water Either all wetland or all non- wetland habitat, evidence of standing/ponded water Significant floodplain encroachment in the form of fill material, land development, or Minor floodplain encroachment in the form of fill and development, or Significant floodplain encroachment (i.e. fill m land development, or		Right Bank 10 9	8 7 6		2 1 0
FLOODPLAIN HABITAT Even mix of wetland and non-wetland habitats, evidence of standing/ponded water Even mix of wetland and non-wetland habitats, no evidence of standing/ponded water Either all wetland or all non- wetland habitat, evidence of standing/ponded water Either all wetland or all non- wetland habitat, evidence of standing/ponded water 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 FLOODPLAIN ENCROACH- No evidence of floodplain encroachment in the form of fill meterial, lend development or Minor floodplain encroachment in the form of fill material, land development, or material Minor development, or Minor floodplain filling, land development, or Significant floodplain encroachment in the form of filling, land development, or	·			vegetation type is shrub or old	Predominant floodplain vegetation type is turf or crop land
FLOODPLAIN HABITAT habitats, evidence of standing/ponded water habitats, no evidence of standing/ponded water wetland habitat, evidence of standing/ponded water wetland habitat, evidence of standing/ponded water wetland habitat, no evide standing/ponded water 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 FLOODPLAIN ENCROACH- No evidence of floodplain encroachment in the form of fill material, land Minor floodplain encroachment in the form of fill material, land Minor floodplain encroachment in the form of fill material, land Minor floodplain encroachment in the full material, land Minor floodplain encroachment in the form of filling, land development, or Significant floodplain encroachment in the form of fill		20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
FLOODPLAIN ENCROACH- No evidence of floodplain encroachment in the form of fill meterial, land development, or material, land		habitats, evidence of standing/ponded	habitats, no evidence of	wetland habitat, evidence of	Either all wetland or all non- wetland habitat, no evidence of standing/ponded water
FLOODPLAIN ENCROACH- ENCROACH- No evidence of noodplain encroachment in the form of fill meterial, land form of fill material, land form of fill material, land form of fill material, land form of fill material, land filling, land development, or filling, land development, or		20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
MENT manmade structures but not effecting floodplain function effect on floodplain function floodplain function	ENCROACH-	encroachment in the form of fill material, land development, or manmade structures	form of fill material, land development, or manmade structures, but not effecting floodplain function	encroachment in the form of filling, land development, or manmade structures, some	encroachment (i.e. fill material, land development, or man-made structures). Significant effect on floodplain function
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2		20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0

Excerpt from CWP Unified Stream Assessment

Site ID:								
		OUTFA	LLS AND POTE	ENTIAL ILL	ICIT DISCH	IARGES		
LOCATION: LT RT [in-stream floodplain FLOW:	both	TYPE:	MATERIAL: Concrete N PVC/Plastic E Other:	Metal Circu Brick Ellipt	ical 🗌 Triple	DIMENSI Diameter:		SUBMERGED: No Partially Fully
None Moderate Substantial Other:	Trickle	Open channel	Concrete Eau	rthen Trape	olic	Depth: Width (To " (Bottor		<u>)</u>
CONDITION: None Chip/Cracke Peeling Pain		ODOR: NONE Gas Sewage	DEPOSITS/STAINS None Oily Flow Line	: VEGGIE		PIPE BENT	THIC GROW	TH: None Green
Corrosion	it	Sewage Rancid/ Sour Sulfide	 Paint Other: 	Imno Exces Other	sive	Good	ALITY:	Colors Oils
FOR	COLOR:	CI	ear Brown	Grey 🗌 Yell	ow 🗌 Green	Orange [Red 🗌 O	ther:
-	TURBIDIT		one 🗌 Slight Cloudi					
	FLOATAB		one Sewage (toile	et paper, etc.) Dumping (bulk)		m (oil sheen) ve Sedimenta		Other:
OTHER		s Trash (paper/ Regular Main		Bank Erosion	Other:	ve Sedimenta	ltion	
I		-						-46-11
stabilization			Discharge inves	sugation \square stream	am dayngnting		eam repair/ou	itian
Description:		_						
OUTFALL SEVERITY: (circle #)	strong sn compare stream; d		f discharge is significant normal flow in receiving to be having a	Small discharge; flow discharge has a colo discharge is very sm flow and any impact	r and/or odor, the an all compared to the s	nount of stream's base	discharge; stai	ot have dry weather ning; or appearance erosion problems.
		5	4		3	2	2	1

SKETCH/NOTES:

Reported to Authorities: Yes No

		TRASH AND]	DUMPING		
TYPE: Industrial Commercial Residential	MATERIAL: Plastic Pape Tires Con Appliances Yard Automotive Other	struction Dedical Waste	SOURCE: Unknown Flooding Illegal dump Local outfall	LOCATION:	A MOUNT (# D: In the l
	STORATION CANDIDATE [ream adoption segme	ent 🗌 Removal	prevention of dumping
no		Other:			
If yes for trash or debris	EQUIPMENT NEEDED :	Heavy equipment 🗌 Tra	ash bags 🔲 Unknow	vn	DUMPSTER WITHIN 100 FT: \Box Yes \Box No \Box
removal	WHO CAN DO IT:	Volunteers 🗌 Local Go	ov 🗌 Hazmat Tea	m 🗌 Other	Unknown
CLEAN-UP POTENTIAL: (Circle #)	A small amount of trash (i.e., less than two pickup truck loads) located inside a park with easy access	A large amount of trash, or with easy access. Trash ma a long period of time but it few days, possibly with a sm	ay have been dumped ove could be cleaned up in	area, where a	of trash or debris scattered over a large ccess is very difficult. Or presence of ions of hazardous materials
	5	4	3	2	1

SKETCH/NOTES:

REPORTED TO AUTHORITIES: YES NO

SITE ID

		BA	NK EROSION	
PROCESS: Cur	rently unknown		RN: LT RT Both (looking	
Downcutting	Bed scour	LOCATION:	leander bend Straight section St	teep slope/valley wall D Other:
Widening	Bank failure	DIMENSIONS:		
Headcutting	Bank scour	- · · ·	LTft and/or RTf	
Aggrading	Slope failure	Bank Ht	LTft and/or RT	_ft Top widthft
Sed. deposition	Channelized	Bank Angle	LT° and/or RT°	Wetted Widthft
LAND OWNERSHIP:	: 🗌 Private 🗌 Pu	ıblic 🗌 Unknown	LAND COVER: Forest Fie	ld/Ag Developed:
POTENTIAL RESTO	PRATION CANDID	ATE: No	Grade control 🗌 Bank stabilization 🗌] Other:
THREAT TO PROPE	erty/Infrastru	CTURE: 🗌 No	Yes (Describe):	
EXISTING RIPARIA	n Width:	□ <u>≤</u> 25 ft	25 - 50 ft 50-75ft 75-10	00ft
EROSION SEVERITY(circle#) Channelized= 1	of the stream eroding	all banks on both sides at a fast rate; erosion at amount of sediment to at to property or	Pat downcutting evident, active stream widening, banks actively eroding at a moderate rate; no threat to property or infrastructure	Grade and width stable; isolated areas of bank failure/erosion; likely caused by a pipe outfall, local scour, impaired riparian vegetation or adjacent use.
		5	4 3	
ACCESS:	Good access: Open ownership, sufficient materials, easy streau heavy equipment usin trails.	room to stockpile m channel access for	Fair access: Forested or developed area adjacent to stream. Access requires tree removal or impact to landscaped areas. Stockpile areas small or distant from stream.	Difficult access. Must cross wetland, steep slope or other sensitive areas to access stream. Minimal stockpile areas available and/or located a great distance from stream section. Specialized heavy equipment required.

		IMP	PACTED	Buffer			
IMPACTED BANK: LT RT Both	REASO	n Inadequate: [Lack of ve Recently p		Too narrow] Widespread in	vasive plants
LAND USE:	Private	Institutional G	olf Course	Park O	ther Public		
(Facing downstream) LT Bank					\Box :		
RT Bank					□:		
DOMINANT	Paved	Bare ground	Turf/lawn	Tall grass	Shrub/scrub	Trees 0	Other
LAND COVER: LT Bank							
RT Bank							
INVASIVE PLANTS:	Non	e 🗌 Rare	🗌 Partia	l coverage	Extensiv	ve coverage	unknown
STREAM SHADE PROVIDED)? □ N	one 🗌 Partial	🗌 Full	WETLAND	s Present? [No	Yes 🗌 Unknown
POTENTIAL RESTORATION	CANDII	DATE Active ret	forestation [Greenway o	lesign 🗌 Nat	tural regeneration	on
no			s removal	Other:			
RESTORABLE AREA: LT BANK R' Length (ft):	Г	REFORESTATION POTENTIAL: (<i>Circle #</i>)	where the not appea specific pu	area on public lar riparian area doe r to be used for a urpose; plenty of able for planting	es public or pr ny presently u	rea on either ivate land that is sed for a specific vailable area for equate	Impacted area on private land where road; building encroachment or other feature significantly limits available area for planting
Width (ft):			4	5	4	3	2 1
POTENTIAL CONFLICTS WI	TH REF(Exist	DRESTATION	Widespread	invasive plant animal impact	s	al contamination	n 🗌 Lack of sun
NOTES:							

Site ID:

		CULVERT	S/STREAM	CROSSING	r T	
TYPE: Road Crossing Railroad Crossing Manmade Dam Beaver Dam Geological Formation Other:						
For Road/ Railroad	SHAPE: Arch Bottomless Box Elliptical Circular Other:	# BARRELS: Single Double Triple Other:	MATERIAL: RCP CMP HDPE Other:	ALIGNMENT	ned aligned	DIMENSIONS: (<i>if variable, sketch</i>) Barrel diameter:(ft) Height:(ft) Culvert length:(ft)
CROSSINGS ONLY	CONDITION: (Evidence of Cracking/chipping/corro Sediment deposition Other (describe):	sion 🗌 Failing	embankment ream scour hole	CULVERT SI Flat Slight (2°) Obvious (2)	-5^{0})	Width: (ft) Roadway elevation: (ft)
POTENTIAL I	RESTORATION CANDIDAT	E 🗌 Fish bar	rier removal 🔲 🕻	Culvert repair/re	placeme	nt 🔲 Upstream storage retrofit
🗌 no		Local str	ream repair 🛛 🗍	Culvert Mainten	ance 🗌	Other:
IS SC ACTING	G AS GRADE CONTROL	🗌 No	Yes 🛛 U	Unknown		
If yes for fish barrier	EXTENT OF PHYSICAL B CAUSE: Drop too high Water Drop:(in)	Flow to		l 🗌 Tempor	rary 🗌	Unknown
		BLOCK	AGE SEVERITY:	(circle #)		
order or greater st	s a dam or road culvert on a 3rd ream blocking the upstream dromous fish; no fish passage device	significant reach	age on a tributary tha of stream, or partial b th the migration of ana	lockage that	blockage	rary barrier such as a beaver dam or a at the very head of a stream with very little h habitat above it; natural barriers such as s
	5	4	3	2	2	1

CHANNEL MOD	IFICATION (<i>if applicable</i>)				
TYPE: Channelization	n 🗌 Bank armoring 🗌 concrete	channel	Floodplain encroachn	nent 🗌 Other	r:
MATERIAL: Concrete Gabion Rip Rap Earthen Metal Other:	Does channel have perennial f	low?	🗌 Yes 🗌 No	DIMENSION Height Bottom Widt	(ft)
	Is there evidence of sediment of	deposition?	🗌 Yes 🗌 No		(ft)
	Is vegetation growing in chann	nel?	Yes No	Top Width:	(ft)
	Is channel connected to floodp	olain?	Yes No	Length:	(ft)
BASE FLOW CHANNEL			ADJACENT STREA	M CORRIDO	R
Depth of flow	(in)		Available width:		
Defined low flow chann	nel? 🗌 Yes 🗌 No				
% of channel bottom	%		Utilities Present?		Fill in floodplain? □Yes □ No
POTENTIAL RESTORAT	TON CANDIDATE 🗌 Structural re	epair 🗌 Base	flow channel creation	Natural ch	annel design
no no	De-channeli	zation 🗌 Fis	h barrier removal	Bioengineer	ing 🗌 Can't tell
CHANNEL-IZATION SEVERITY: (Circle #)	A long section of concrete stream (>500') channel where water is very shallow (<1" deep) with no natural sediments present in the channel.	stabilized and b	gth (> 200') ,but channel eginning to function as a channel. Vegetated bars ed in channel.	water depth, a na size and shape s	nel less than 100 ft with good atural sediment bottom, and similar to the unchannelized above and below impacted
	5	4	3	2	1
Noma				P	

NOTES:

Reported 🗌 Yes 🗌 No

Session F: Tropical Roundtables

2011 Pacific Island Watershed Institute

Description: There are six topics that were selected from the initial PIWI survey. Each participant will select <u>two</u> of the following roundtables to attend during the two-hour session:

Topic #1: Rural & Agricultural Watershed Management Issues

Agricultural watersheds frequently show elevated sediment and nutrient loads, despite a suite of technical assistance and financial incentives from local, state/territorial and federal sources that encourage implementation of best management practices (BMPs). Join us to discuss some of the barriers and identify ways to increase adoption of BMPs.

Facilitators: Carolyn Stewart (MCS International), Jean Brokish (Oahu RC&D) Assistant: Rob Ferguson

Topic #2: Pollution Tracking & Monitoring of Groundwater & Surface Water

Identifying problem pollutants with regard to land based sources, monitoring to characterize the problem, and tips for remediating pollutant sources. This may have relevance for TMDLs and pollutants that impact near-shore environments and reefs.

Facilitators: Robin Knox (Water Quality Consulting, Inc.), Dwayne Minton (The Nature Conservancy) Assistant: Kathy Chaston

Topic #3: Climate Change & Islands

Big Topic – how climate change is expected to affect islands and adaptation strategies that are taking place, and how this may affect watershed planning efforts and drainage infrastructure.

Facilitators: Victoria Keener (Pacific RISA), Melissa Finucane (Pacific RISA) Assistant: David Hirschman

Topic #4: Groundwater Protection

How groundwater "works" on islands in coral (limestone) and volcanic settings, drinking water aquifers vulnerability, and strategies to protect groundwater supplies from contamination from land-based activitities. Guam's Northern Aquifer as a case study.

Facilitators: Esther Taitague (Guam Coastal Management Program) Assistant: Anne Kitchell

Topic #5: Small-Scale & On-Site Wastewater

Issues with the design, siting, and maintenance of small-scale wastewater systems. Ideas for remedies and new design strategies to enhance treatment.

Facilitators: Hudson Slay (EPA), Rich Claytor (Horsley Witten)

Topic #6: Land Conservation

Targeting, acquiring, and managing priority lands for conservation with focus on coral health. Strategies for working with landowners, fundraising, long-term management, etc.

Facilitators: Butch Haase (Molokai Land Trust), Umiich Sengebau (The Nature Conservancy) Assistant: Michelle West

Topic #1: Rural and Agricultural Watershed Management Issues

General Description of Topic:

Despite numerous resources available to farmers and land managers in rural and agricultural watersheds to adopt appropriate best management practices (BMPs), problems like soil erosion from row crop agriculture, overgrazing, and poor animal waste management persist and, ultimately, contribute to land based stormwater pollution.

Responsibility for mitigating potential problems from agricultural lands is divided among a variety of agencies at the local, state / territorial and federal levels. Confusion surrounding which rules apply and which agencies can assist often hinders BMP implementation.

Additional potential barriers to widespread implementation of BMPs include: lack of landowner understanding of regulatory and non-regulatory processes; inadequate financial incentives; lease and land tenure structures that prohibit access to financial incentive programs; limited capacity to develop conservation plans and watershed plans for agricultural watersheds; inadequate water quality and pollutant load data; complex application and program management processes; complicated evaluation and monitoring requirements; and likely many more.

Increasing the adoption of BMPs requires successfully indentifying the responsible parties and getting a better understanding of the challenges and requirements. Only then, can specific suggestions and improvements be made. What do you see as the primary challenges and top priorities for improvement, and how would you go about it?

A Few Good Resources (see also general resources provided with workshop materials):

- Department of Health, Clean Water Branch documents: <u>http://hawaii.gov/health/environmental/water/cleanwater/prc/index.html</u>
- Guidelines for Livestock Waste Management: <u>http://hawaii.gov/wastewater/forms.html</u>
- Hawai'i Coastal Nonpoint Pollution Control Program documents: <u>http://hawaii.gov/dbedt/czm/initiative/nonpoint.php</u>
- NRCS Pacific Islands Area Field Office Technical Guide: <u>http://www.pia.nrcs.usda.gov/technical/</u>
- University of Hawai'i Cooperative Extension Service: http://www.ctahr.hawaii.edu/site/Extprograms.aspx

Contact Information for Session Facilitators:

Jean Brokish, Oahu Resource Conservation & Development Council. <u>jean.brokish@oahurcd.org</u> Carolyn Stewart, MCS International. <u>mcstewart@hawaii.rr.com</u> Rob Ferguson, NOAA. <u>rob.ferguson@noaa.gov</u>

Notes:

Topic #2: Land-based Sources of Pollution -- Identifying and Monitoring Pollution in Ground & Surface Waters

Land-based pollutants, such as sediments, nutrients, and contaminants are among the leading threats to coral reef ecosystems across the globe. It's estimated that up to 22 percent of the world's coral reefs are under medium to high threat from soil erosion and land-based pollution and as high as 50 percent are threatened in countries with wide-scale land clearing. Impacts to coral reefs include: direct and indirect coral mortality, decreased growth rates and reproduction, shifts in species composition, increased incidence of disease, loss of habitat for settlement of coral recruits.

Land-based pollutants differ from watershed to watershed depending upon historic and present-day land use practices. Identifying pollutants of concern and determining appropriate levels of these pollutants in ground and surface waters present significant challenges to local resource managers, but are critical to developing and implementing effective management actions and monitoring strategies.

This session will focus primarily on an inquiry-based process for identifying pollutants of concern and their landbased sources. This approach will touch on important considerations, including: identifying the intended use of the water and addressing both human and ecological health. As appropriate, this session will also address approaches to watershed planning, identification of pollutant sources, assessments of pollutant impacts on ecosystem functions and services, and development of monitoring strategies for pollutants and impacted resources.

A Few Resources About Pollution Tracking and Monitoring on Pacific Islands

- Golbuu, Y., E. Wolanski, P. Harrison, R. H. Richmond, S. Victor, and K. E. Fabricius. 2011. Effects of Land-Use Change on Characteristics and Dynamics of Watershed Discharges in Babeldaob, Palau, Micronesia. Journal of Marine Biology, vol. 2011, 17 pp.
- Houk, P., G. DiDonato, J. Iquel, and R. Van Woesik. 2005. Assessing the effects of non-point source pollution on American Samoa's Coral Reef Communities Environmental Monitoring and Assessment 107: 11–27.
- ISRS. 2004. The effects of terrestrial runoff of sediments, nutrients and other pollutants on coral reefs. Briefing Paper 3, International Society for Reef Studies. 18 pp.
- Storlazzi, C. D. M. E. Field and M. H. Bothner. 2011. The use (and misuse) of sediment traps in coral reef environments: theory, observations, and suggested protocols. Coral Reefs 30: 23-38.
- Dailer, M. I., Smith, J. E., Knox, R. S., Napier, M., & Smith, C. M. (2010). Using δ15N values in algal tissue to map locations and potential sources of anthropogenic nutrient inputs on the island of Maui, Hawaii. *Marine Pollution Bulletin*, 60, 655-671.

Contact Information for Session Facilitators:

Robin Knox ,Water Quality Consulting, Inc., 28 Waikalani Place, Kihei HI, 96753 (808)281-6416 wqcinc@hawaii.rr.com

Dwayne Minton. The Nature Conservancy, 923 Nu'uanu Ave., Honolulu, Hawaii 9817. 808-587-6272. <u>dminton@tnc.org</u>

Kathy Chaston, NOAA Coral Reef Conservation Program at Pacific Services Center: kathy.chaston@noaa.gov

Notes:

Topic #3: Climate Change & Islands

General Description of Topic:

Climate variability (seasonal to decadal timescales) and change (multi-decadal and greater timescales) pose unique challenges for small islands. Island vulnerability stems from limited size, proneness to natural hazards including sea level rise, physical isolation, low adaptive capacity for some, and high adaptation costs relative to gross domestic product. Climate-related disasters can have domino effects causing one vulnerable sector to influence others. During the better part of the last century, air and ocean surface temperatures in the Pacific region have warmed by about 1.0°C (0.9°F) since 1910. Trends in extreme temperature across the South Pacific for 1961-2003 show increases in the annual number of hot days and nights, with decreases in the annual number of cool days and nights, particularly in the years following an El Niño. Annual rainfall amount in the next century is predicted to be only slightly different, however, the timing and amounts are expected to change, with trends towards more frequent heavy/extreme precipitation events. In the tropical South Pacific, small islands to the east of the dateline are highly likely to receive a higher number of tropical storms during an El Niño. Observed tropical cyclone activity in the South Pacific east of 160°E indicates an increase in level of activity associated with El Niño events. Sea level rise is occurring in a spatially diverse way throughout the Pacific, while the maximum observed rate of rise has been in the central and eastern Pacific, spreading north and south around the sub-tropical gyres of the Pacific Ocean near 90°E, mostly between 2 and 2.5 mm/yr but peaking at over 3 mm/yr.

Issues to Consider:

• The process of creating local future climate scenarios from Global Circulation Models (GCMs) is called **downscaling**. The figures below show maps of Hawaii in different climate model resolution grids. (*L to R: Hawaii in an AR-4, AR-5, regional, and high-resolution local model, figure credit: Axel Lauer, IPRC, U. Hawaii*)

- While downscaled predictions would assist with adaptation, it is difficult to create accurate downscaled climate projections for each island, as they are comparatively small, topographically diverse, and environmentally unique.
- Socio-economic contributors to island vulnerability include external pressures such as trade and globalization, financial crises, international conflicts, rising external debt, rapid population growth, incidence of poverty, political instability, unemployment, reduced social cohesion, and a widening gap between poor and rich.
- Fresh water is critical for islands. When supplies are affected by climatic events, food security, livelihoods, & public health are threatened. Aquifers are fragile and can be threatened by increasing demand & salt-water intrusion.
- How certain do predictions need to be before one takes concrete adaptation measures to protect a community?

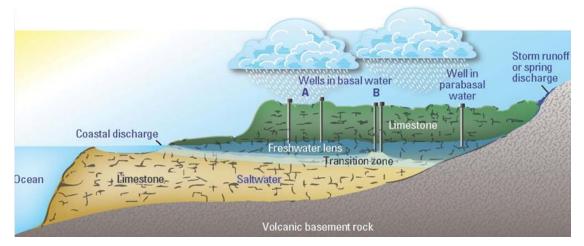
Links and Resources for Climate Change & Pacific Islands

- The International Pacific Research Center, a source for academic climate research and *data: http://iprc.soest.hawaii.edu/*
- Pacific ENSO Applications Center (PEAC), a NOAA/NWS resource that provides current conditions and forecasts of the El-Nino/Southern Oscillation (ENSO) phenomena for stakeholders on the USAPI: http://www.prh.noaa.gov/peac/
- Pacific Climate Information System (PaCIS), an international region-wide "network of networks", providing a comprehensive snapshot of current climate research, assessment, and outreach activities: http://noaaclimatepacis.org/#dataServices/noaaPartners
- Kailua Beach & Dune Management Plan: a pilot-project on Oahu that takes sea-level-rise directly into account when considering beach management options for the present and future: http://seagrant.soest.hawaii.edu/sites/seagrant.soest.hawaii.edu/files /publications/kailua_beach_mgmt_plan.pdf

Contact Information for Session Facilitators

Dr. Melissa Finucane, East-West Center, Honolulu, Hawaii; Office: 808.944.7254 <u>FinucanM@EastWestCenter.org</u> Dr. Victoria Keener, East-West Center, Honolulu, Hawaii; Office: 808.944.7220; <u>KeenerV@EastWestCenter.org</u>; Website:

http://www.PacificRISA.org


Topic #4: Groundwater Protection

Protecting groundwater resources from alterations in recharge caused specifically by watershed land use activities can be critical for islands where freshwater aquifers are a significant source of drinking water. Changes in water withdrawal rates and stormwater infiltration patterns can influence the quality and quantity of groundwater supplies, and there are a number of regulatory and technical approaches to minimize these impacts.

The U.S. territory of Guam is the southernmost island in the Mariana Archipelago and the largest island in Micronesia. With a population of about 178,000 people, the 214-square mile island is the most populated landmass in this part of the Pacific, and will undergo additional population increases as the Department of Defense prepares to move thousands of military personnel, their dependents and associated support staff to the island. This massive relocation project poses extraordinary challenges for natural resource management, particularly with respect to drinking water production and wastewater management.

Guam's southern half is volcanic, while the northern portion of the island is primarily uplifted limestone. The Northern Guam Lens Aquifer supplies about 80% of the island's drinking water, providing about 40 million gallons of water daily. Previous estimates of the aquifer's maximum sustainable yield estimated that about 57 million gallons of water could be safely drawn from the aquifer daily, but a new study to estimate MSY is underway to account for changing recharge rates, contamination issues, climate change and other factors. Through the years, some wells have shown increased chloride rates as the saltwater underlying the aquifer's freshwater layer is drawn upward through aggressive pumping, while others have shown chemical levels exceeding federal standards.

The high permeability of the limestone allows rapid infiltration of rainfall, so surface runoff occurs locally after intense rain. The limestone also offers little resistance to groundwater flow so the freshwater layer may be thin, and water levels can vary by several feet on a daily and seasonal basis. The nature of the lens makes it susceptible to a number of contaminants, which may come from sources including farms, underground storage tanks, dump sites, septic systems and cess pools, sewer lines, stormwater and a variety of other sources. As the majority of Guam's population lives over the aquifer, management of this critical resource can be a delicate balancing act.

Contact Information for Session Facilitators

Esther Marie G. Taitague, Guam Coastal Management Program, esther.taitague@bsp.guam.gov

A Few Good Resources About Groundwater on Guam

University of Guam, Water and Environmental Research Institute (WERI) <u>www.weriguam.org</u> U.S. Geological Survey (USGS) <u>http://pubs.usgs.gov/fs/2010/3084/fs2010-3084.pdf</u>

Topic #5: Small-Scale & On-Site Wastewater

Potential wastewater impacts are often a critical component of watershed management and pose many questions. Do wastewater systems in my watershed pose risks to drinking water sources, recreational waters, aquatic ecosystems? How would I know? What types of wastewater treatment and disposal systems are used? Are these technologies effective? How well are these systems operated and maintained? Join us to discuss these issues and find out how your colleagues are addressing wastewater issues.

While centralized wastewater systems are used in urbanized areas of our islands, a considerable amount of wastewater is treated/disposed with small-scale or onsite systems. Islands present unique wastewater management issues due to limited developable land, the high cost of land, the need to conserve water, and wastewater impacts on drinking water and aquatic resources. While there are opportunities to utilize new technology for new systems and retrofits, the reality of island wastewater management requires a comprehensive approach as well as addressing technology ranging from simple cesspools to sophisticated Membrane Reactor (MBR) treatment and wastewater reuse.

Evidence linking wastewater to water quality and human health impacts is often a complicated issue in tropical environments. Enterococcus is the current bacteria indicator used as to identify possible sewage contamination in surface waters because they are commonly found in human and animal feces. However, several studies strongly suggest enterococci may not be the best indicator of human sewage in tropical environments because it occurs and reproduces naturally in the environment. The use of multiple indicators to better refine the potential sources may required (e.g., *Clostridium perfringens*, coliphages, pharmaceuticals, optical brighteners).

Design and siting of wastewater systems considers geology, soils, proximity to groundwater and surface water, available land and, of course, cost. Guidance documents of current treatment and disposal systems along with advantages and constraints can help practitioners in the selection, design, construction, operation, maintenance, and permitting of these facilities. This guidance can provide useful information for watershed managers to highlight the most desirable small wastewater systems given watershed conditions and help influence government policy and management decisions.

Understanding the wastewater problem and potential solutions also requires understanding the types and geographic distribution of wastewater treatment and disposal within your watershed. This will assist in targeting the use of specific technologies for new and replacement systems, operation and maintenance as well as inspections.

A Few Good Resources: (see also general resources provided with workshop materials)

- Hawaii Department of Health. <u>http://hawaii.gov/health/environmental/water/cleanwater/prc/septic.html</u>
- National Small Flows Clearinghouse (NSFC). http://www.nesc.wvu.edu/wastewater.cfm
- EPA Septic Systems. <u>http://cfpub.epa.gov/owm/septic/index.cfm</u>
- Hawaii Low Impact Design Manual (2006). http://hawaii.gov/dbedt/czm/initiative/lid.php

Contact Information for Session Facilitators:

Rich Claytor, Horsley Witten Group <u>rclaytor@horsleywitten.com</u> Hudson Slay, U.S. EPA Pacific Islands Contact Office-Honolulu <u>slay.hudson@epa.gov</u>

Notes:

NOAA Climate Data A Vital Asset to Oahu Construction Industry

Each year NOAA's Climate Prediction Center, a part of the National Weather Service, issues several long-range seasonal forecasts for our nation. These include winter, spring and hurricane outlooks and El Niño and La Niña advisories. NOAA meteorologists in Hawai'i then adapt these forecasts to island conditions, drawing on past and present climate data and local knowledge to develop a "wet season outlook." This outlook gives residents a heads-up about conditions that are critical to both their safety and the economy of Hawai'i.

PVT Land Company, in Nanakuli, HI

Newly constructed storm water pond at landfill

Road to landfill subject to erosion and washout during heavy rainfall.

increase storm water capacity. It also improved road design and conditions, not only for dependable travel but to withstand storm water run-off and erosion. As a result, there were no shutdowns or washouts when the predicted wet weather hit this winter. Also avoided was the loss of \$600,000 in gross sales, \$100, 000 in lost salaries, and a potential \$300,000 to \$600,000 in damage to roads and landfill.

Traditionally, wild land fire managers, the agriculture sector, and water supply agencies have been the primary consumers of NOAA climate data and forecasts. Irrigation reservoir operators for instance, use drought forecasts to implement water-use restrictions to help sustain the water supply for farmers.

In Hawai'i, as elsewhere across the nation, the demand for climate products beyond the usual user base is rising. This year, for example, climate data have been immensely valuable to the construction industry on Oahu. When Steve Joseph,

vice president of PVT Land Company in Nanakuli, learned from a NOAA briefing last October that the winter season would be much wetter than usual, his firm went into mitigation mode. PVT upgraded structures to

"No one wants to hear about washouts or shutdowns at a construction landfill. NOAA's long-range predictions have helped us mitigate the worst effects of a wet winter. They are vital to our long-range business planning and, therefore, to every one of our customers."

Steve Joseph, Vice President, PVT Land Company

Without the heads-up, not only PVT but Oahu's entire construction industry would have been hurt, with losses in the millions of dollars. As the only construction landfill on the island, more than 200 trucks come to PVT each day. A shutdown would have stopped some construction projects completely and slowed down others, affecting hundreds of construction and trucking jobs across the island.

PVT's landfill area usually gets 10 to 14 inches of rain annually. So far this year, 18 inches have fallen. Despite nine inches of rain from a single storm in January, PVT was up and operational within 24 hours. A nearby landfill, without the same level of mitigation measures, was shut down for two weeks.

Session G: Watershed Accounting & Project Ranking

2011 Pacific Island Watershed Institute

Description: Increasingly, watershed plans must document the costs and benefits associated with implementing various types of restoration projects. This type of watershed accounting may be required for TMDLs and other compliance issues, to secure grant funding for projects, and certainly to rank and prioritize the various projects identified in the plan. How can we tell which projects may be the highest priority for implementation? What are some objective ways to score and rank projects? This session will review the metrics and methods of measuring performance, prioritizing projects, and estimating pollution load reduction. The session will feature hands-on exercises using spreadsheets and scoring worksheets.

Speakers:

David Hirschman, Center for Watershed Protection

Topics/Notes:

1. Why watershed accounting is needed.

2. Where does watershed accounting fit into the overall context of watershed planning? How can we tell if our plans are meeting restoration goals?

3. Overview of screening factors, scoring, and ranking based on various metrics, including pollutant loads, cost, and more qualitative measures.

- 4. Using sites identified during the morning field trip, assign scores and rank selected projects using the spreadsheet and scoring form
- 5. How can you use this work to help with your island work sessions?

Session G: Watershed Accounting & Project Ranking

This is an example of a scoring matrix to allow multiple restoration projects to be scored, ranked, and prioritized based on a set of objective and subjective criteria. Developing these screening factors and scoring systems is an important step in developing a watershed restoration plan.

SCREENING FACTOR	DESCRIPTION	MAX. POSSIBLE	SCORING ¹	SCORE
SCREENING FACTOR	DESCRIPTION	SCORE	SCORING	SCORE
Total Nitrogen (N)	Measures area treated		< 1 pound of N = 5 points	
Removed	combined with pollutant	20	1 to 2 pounds of N = 10 points	
(pounds per year)	removal efficiency of	20	2 to 4 pounds of N = 15 points	
(pounds per year)	practice.		> 4 pounds of N = 20 points	
			> \$27K per pound = 5 points	
Cost Per Pound of N	Measure of cost-	20	\$20K to \$26K per pound = 10 points	
Removed (\$)	effectiveness.	20	\$12K to \$19K per pound = 15 points	
			< \$12K per pound = 20 points	
	Measure of the total		> \$30K = 5 points	
Total Construction	cost to compare to	20	\$13K to \$29K = 10 points	
Cost (\$)	program budgets.	20	\$7.5K to \$12K = 15 points	
	program buugets.		< \$12K = 20 points	
			Low Visibility & Education Opportunity; practice on private land, not	
			very accessible = 0 points	
	How well will the			
Public	practice serve to engage	10	Medium Visibility & Education Opportunity; may be on public or	
Visibility/Outreach	and educate the public?	10	private land, but not in high traffic or pedestrian area = 5 points	
			High Visibility & Education Opportunity; located on public land	
			(school or park) = 10 points	
			Low = project must develop agency support & funding = 0 points	
	Is there momentum to			
Quick	implement the practice;		Medium = supported by agencies, but funding is not secured; project	
Implementation	are agencies supportive;	10	must stand on its own for implementation = 5 points	
	are there other projects			
	it can be attached to.		High = supported by agencies, likelihood to be combined with	
			another project, funding likely = 10 points	

Long-Term Maintenance Burden	How difficult and costly will it be to maintain the practice over time.	10	High = practice will require frequent and intensive maintenance = 0pointsMedium = practice will require maintenance of structural elements,such as dams and pipes, as well as vegetation = 5 pointsLow = practice maintenance depends largely on maintainingvegetation, mulch, and maybe small weirs or underdrains = 10 points	
Use of Innovative Practices	Is this an innovative practice you'd like to see demonstrated on your island?	10	Not Innovative = practice is routine on the island = 0 pointsSomewhat Innovative = practice is used on island, but it is notwidespread and the proposed practice would be a good example = 5pointsInnovative = the practice is very rare or not used, and it would be anexcellent demonstration project = 10 points	
TOTAL SCORE		100		
CWP project. The da assigned a score of 5	ta were listed for all candidat , the second quartile a score c	e projects and divi of 10, the third a so	, and Total Construction Cost, the ranges used for scoring were derived from an exided into quartiles. The lowest quartile (bottom one-quarter of all data values) was core of 15, and the top quartile (best values for the categories) a score of 20. This is quartiles would be derived from the actual projects you are scoring. Therefore, the	s is one

given here should be considered place-holders.

This table uses pre-selected screening factors as an example. A fuller list of screening factors is provided below. You may want to discuss which are most relevant to your priority watershed in your Island Work Sessions. In general, you might want to select 5 or 6 screening factors as a basis for prioritizing projects.

- Cost (\$)
 - Total
 - Per Treated Acre
 - Per Pound of Pollutant Removed (select priority pollutant)
- Pollutant Removal (total pounds/year)
- Long-Term Maintenance Burden
- Landowner Issues
- Permitting

- Coordination With Other Efforts does the project leverage or support existing efforts
- Quick Implementation are there opportunities for quick implementation based on funding and agency programs
- Neighborhood Acceptance
- Regulatory/Compliance

- Access to the Practice
- Innovative Practices
- Partnership Opportunities
- Public Visibility & Outreach Opportunities
- Habitat Creation
- Community Benefits

Session H: Erosion and Sediment Control (ESC) for Islands

2011 Pacific Island Watershed Institute

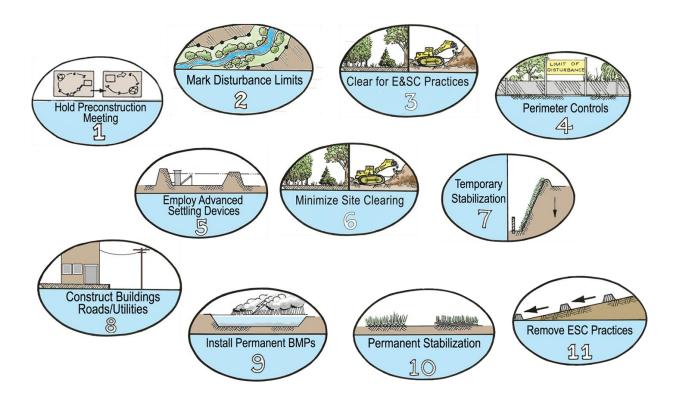
Description: Discuss the impact of inadequate ESC at construction sites, review basic ESC principles and practices used to manage erosion on site; review an erosion control plan in small groups; and discuss the basic elements of an ESC program

Speakers:

- Michelle West, Horsley Witten Group
- Anne Kitchell, Horsley Witten Group

Resources:

- US EPA NPDES General Construction Permit <u>http://cfpub.epa.gov/npdes/stormwater/cgp.cfm</u>
- Hawaii DOT Erosion Control Manual 2008 <u>http://stormwaterhawaii.com/resources/</u>
- 2006 CNMI/Guam Stormwater Management Manual <u>www.deq.gov.mp/article.aspx?secID=6&artID=55</u>
- American Samoa Runoff Control Guidance Manual: <u>asepa.gov/ library/documents/.../part1 runoffcontrolguidancemanual.pdf</u>


Topics/Notes:

- 1. Why proper ESC matters
- 2. ESC Principles and construction sequencing (see back of page)
- 3. What are the common ESC practices applied on site?
 - a. Sediment barriers
 - b. Conveyances
 - c. Traps
 - d. Stabilization
 - e. Inlet/outlet protection
- 4. What are basic elements of an effective ESC program?

Common Principles of ESC

- 1. Minimize clearing and grading
- 2. Protect waterway buffers and stabilize drainage ways
- 3. Phase construction to limit soil exposure
- 4. Stabilize exposed soils immediately (7-14 days)
- 5. Protect steep slopes and cuts
- 6. Install perimeter controls to filter sediments
- 7. Employ advanced sediment settling devices
- 8. Certify contractors on ESC plan implementation
- 9. Conduct a pre-construction site meeting and adjust plan if necessary
- 10. Schedule construction during the least rainy season (if possible)
- 11. Maintain ESC throughout construction

Construction Sequence

Session H: Erosion and Sediment Control (ESC) on Islands Group Exercise on Example ESC Plan

Task 1 – Review the Site Plan.

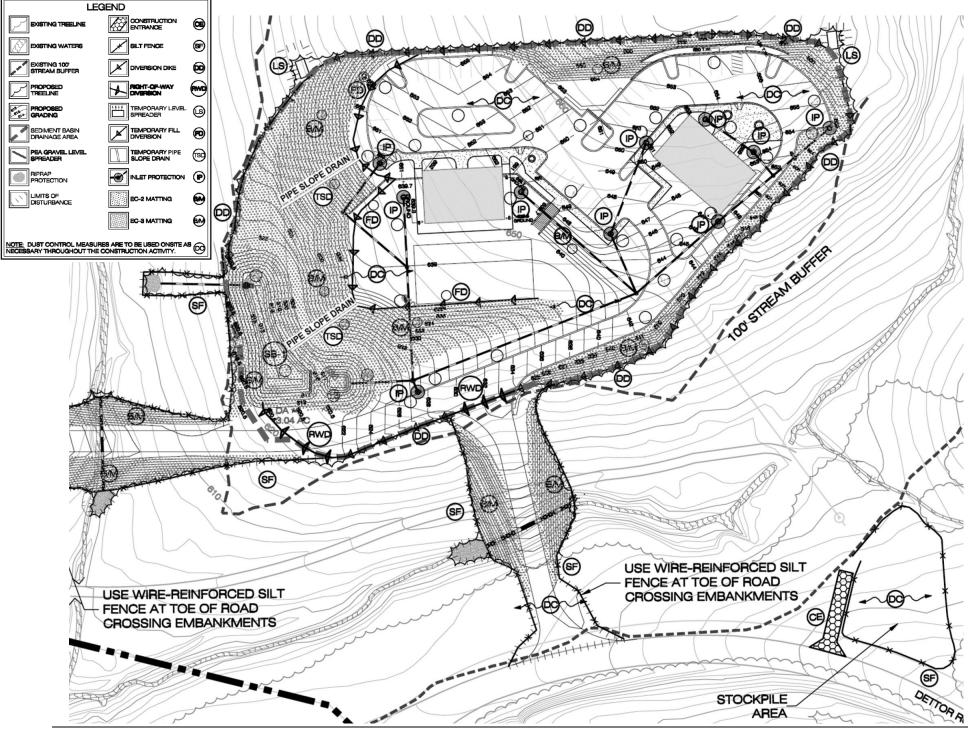
- Use the blue highlighter to outline the stream and stream buffer.
- □ Locate the proposed tree line and highlight with green. What else is located in the same place as the proposed tree line?_____
- □ Identify the highest point on the site and mark it with an "X."
- □ Locate the proposed storm sewer system and highlight it with orange.
- □ Locate the following ESC measures and highlight them with yellow:
 - construction entrance
 - materials stockpile area
 - \circ inlet protection
 - pipe slope drain

- level spreadersdiversion and temporary dikes
- outlet riprap protection
- sediment basin

Task 2 – Conveyance.

- □ Draw a flow path from the highest point on the site to the stream. What practices are used to divert this "clean," offsite runoff around the site?_____
- □ What practices convey runoff through the site and into the sediment basin?

Task 3 – Review the construction sequence. Indicate which step in the sequence the following activities belong (for example, "construction entrance" belongs in Step 1 of the sequence):

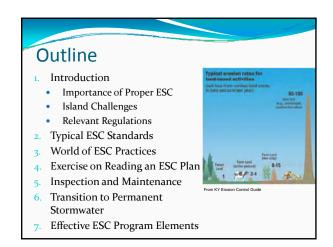

	Sequence Step
Clearing of site	
Removal of all temporary ESC Measures	

Task 4 – Locate and circle the Maintenance section of the notes. When should sediment be removed from behind the silt fences at this site?

Task 5 – Review the Erosion and Sediment Control Notes. According to #6, who is responsible for the installation of any additional ESC measures required at the site?

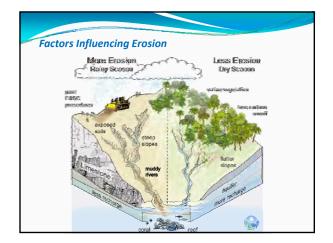
Task 6 – Review the detail for a diversion dike. What is the minimum height for the dike?______Should the dike be compacted? Yes or No (circle one).

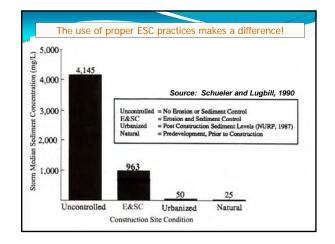
Additional Notes:

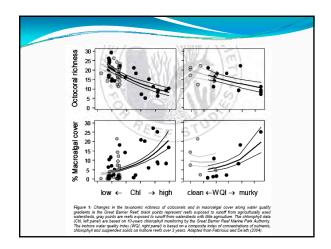


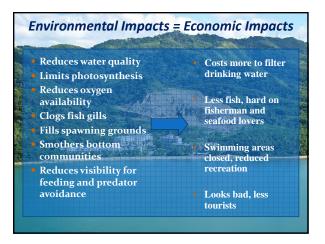

GROUP SITE PLAN EXERCISE SESSION H: ESC FOR ISLANDS

Pacific Island Watershed Institute Session H: Erosion & Sediment Control (ESC) for Islands


June 13-16, 2011 He'eia State Park, Oahu






Why is ESC Important?

- ESC reduces runoff and sediment loads to streams, lakes, wetlands, coastal areas, groundwater
- ESC mitigates the impacts of erosion and sedimentation:
 - Direct environmental impacts
 - Economic impacts
 - Impacts to stormwater BMPs
 - Impacts to abutting properties

Models estimate that 22% of all coral reefs world-wide are at high or medium threat from inland pollution and soil erosion (Bryan<mark>t et al. 1998)</mark>

Relevant Regulations and Guidelines in the Islands

- USEPA National Pollutant Discharge Elimination System (NPDES)
- American Samoa Water Quality Standards, ASAC 24.02
- American Samoa Coastal Management Program, ASAC 26.02
- AS-EPA's Guidance Manual for Runoff Control
- Palau Regulations on Earthmoving and Marine and Fresh Water Quality
- 2010 Palau Stormwater Management Manual CNMI Earthmoving and Erosion Control
- Regulations 2006 CNMI/Guam Stormwater Management
- Manual
- 2008 Hawaii DOT Erosion Control Manual

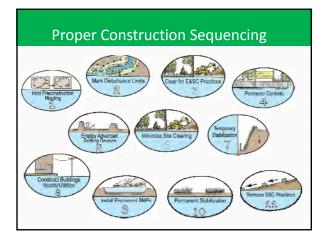
U.S. Jurisdiction

• <u>All new construction and redevelopment sites</u> should be subject ESC and stormwater criteria

- ESC plan requirementsESC standards

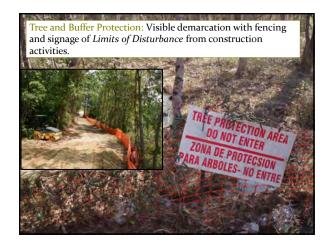
• All <u>sites over 1 acre</u> of disturbance must:

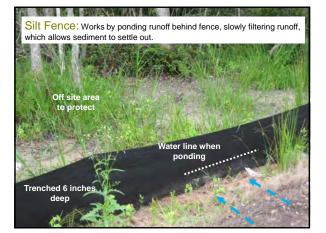
Submit NOI to EPA for NPDES permit
Prepare a Stormwater Pollution Prevention Plan (SWPPP)

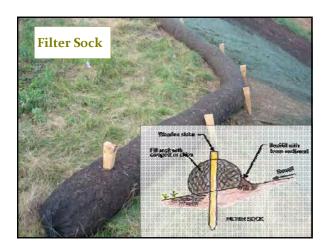

FSM and Republic of Palau?

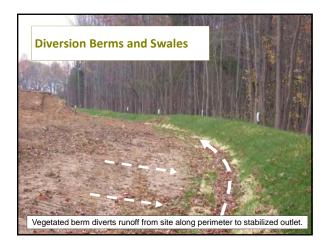
2. Typical ESC Standards

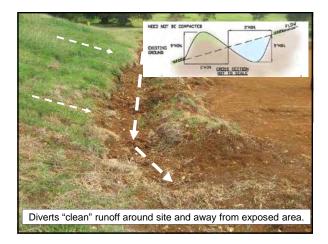
- 1. Minimize clearing and grading
- 2. Protect waterway buffers and stabilize drainage ways
- 3. Phase construction to limit soil exposure
- 4. Stabilize exposed soils immediately (7-14 days
- 5. Protect steep slopes and cuts
- 6. Install perimeter controls to filter sediments
- 7. Employ advanced sediment settling devices
- 8. Certify contractors on ESC plan implementation
- 9. Conduct a pre-construction site meeting and adjust plan if necessary
- 10. Schedule construction during the least rainy season (if possible)
- 11. Maintain ESC throughout construction



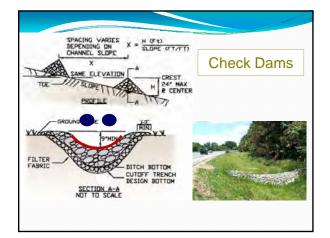


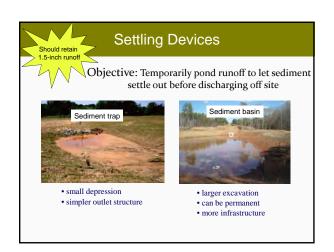


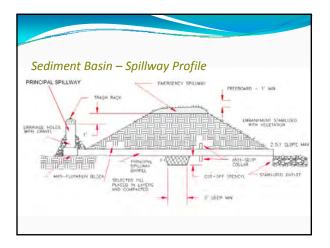

Alternative products are only as good as their installation and maintenance

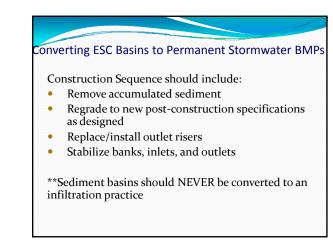




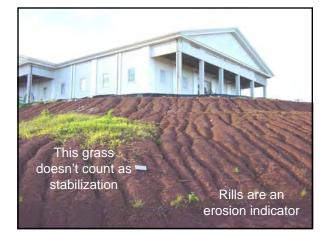


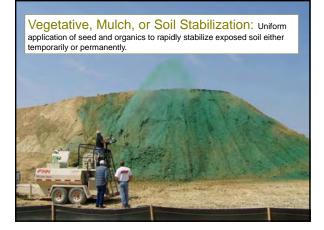




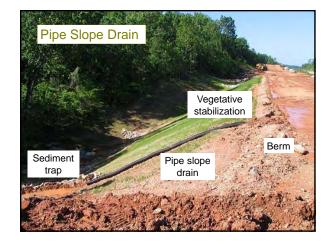


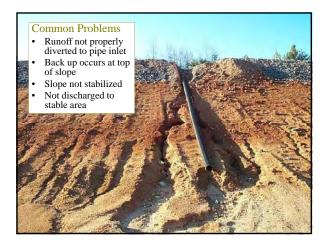
sins vs. Traps		
	Basins	Traps
Max Drainage Area	100 acres	5 acres
Size	5,500 cubic ft/acre of drain	age, >2:1 length to width
Dam Height	10-15 ft max.	5 ft max.
Dam Width	8-10 ft min.	4 ft min.
Dam Side Slopes	2.5:1 or flatter	2:1 or flatter
Outlet	Riser with spillway	Riser or grass/rock outle
Riser Height	2 ft below top of dam, 1 ft below spillway.	1 ½ ft below top of dam
Status	Temporary or Permanent	Temporary

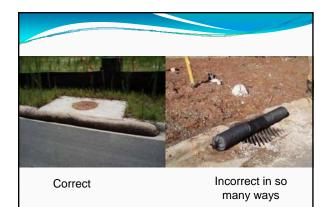


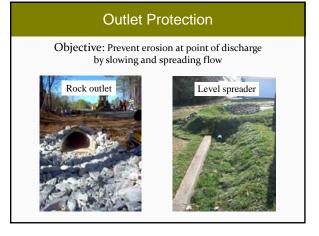


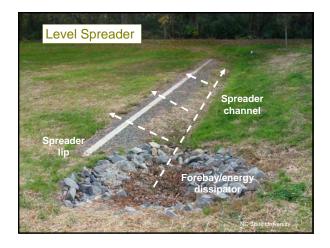
Surface Roughening: Creation of horizontal depressions, steps, or grooves that run parallel to contour of land and slow runoff.



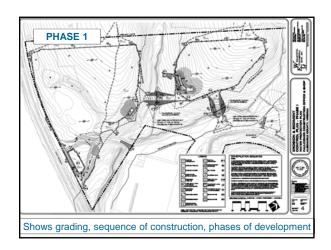

Pacific Island Watershed Institute Session H: ESC

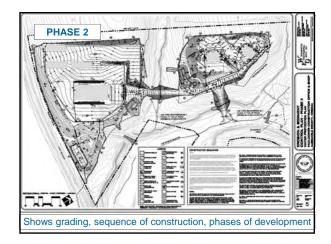


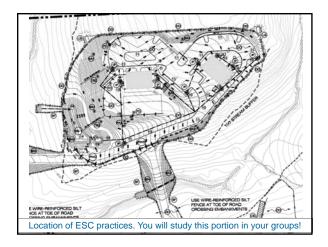


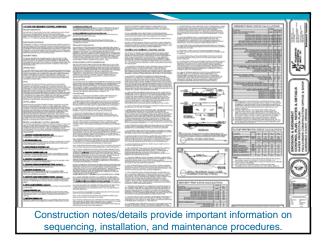


ESC Practice Summary


- Sediment Barriers- to prevent sediment from leaving site
- Diversions-to convey non-erosive runoff through/around site
- Traps/Basins-to pond runoff and allow sediment to settle out before discharging "clean" water
- Stabilization To prevent erosion of bare soils and slopes
- Inlet protection To let water pass, but keep sediment out
- Outlet protection To prevent erosion at discharge points


4. Reading a Site Plan 1. Elements of an ESC plan 2. Contractor information 3. Group Activity


Elements of an ESC Plan


- Prepared by engineer (P.E.)
- · Clearing, grading, and sequencing schedule
- · Location, details, construction specs, and maintenance requirements
- Re-vegetation/stabilization plan for temporary and permanent conditions

Contractors must: · Read the ESC plan · Implement the ESC practices called for in the plan Inspectors: · Follow the construction sequence Review the plan • Install and maintain practices according to plan

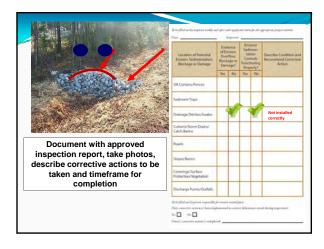
- Recommend/make adjustments to • plan based on field conditions
- Have copies in the field during inspections
- Make sure on-theground conditions match ESC plan

Stage	Basis of Plan Change
Pre-construction meeting	Plan impractical from contractor's standpoint, site visit confirms plan unsuitability.
After clearing/grading and sediment controls installed	"As-built" grading or sediment controls differ from original plan.
During inspection after storm event	Poor performance may require adjustments. May need engineer approval.

ESC F	Plan Activity
1.	Break up into groups and appoint one note-taker
2.	Take copy of sample ESC plan
3.	Follow instructions in your handout, such as:
	Locate protected areas
	Review grading
	Locate practices on plan
	Identify construction sequencing
	Review notes and details
4.	Report out

Practice	Installed	Installed Properly	Adequately Maintained	It helps if you:
Silt Fence	67%	58%	34%	 Include ESC maintenance \$ in budget
Sediment Trap	86%	86%	58%	Designate on-site contractor for maintenance
Stable entrance	89%	89%	67%	• Set self-inspection schedule

Practice	High	Med	Low	Frequency
Silt fence	 Image: A set of the set of the)		Daily
Stable entrance	\sim	~		Daily
Berms/swales		~		Weekly
Check dams			~	After rain event
Traps/basins		✓		When ½ full
Erosion mats			 Image: A start of the start of	
Inlet protection	√			
Rock outlet			√	After rain events
Level spreaders			\checkmark	-


	and the second
Routine maintenance by workers	
 Removing sediment tracked on road 	
• Repair torn fabrics in fencing, inlet protection, and erosion control matting	
 Replace natural area protective fencing 	
 Replace rocks from entrances, check dams, and outlet protection 	
 Fill gullies and rills 	
 Irrigate vegetation 	
 Remove sediment behind sediment barriers, check dams, and in trapping devices 	
	90

Inspectors should:

- Know the ESC plan
- Inspect at required frequency (7 days, after storm events, installation, final)
- Evaluate practice effectiveness
- Identify corrective actions
- Concentrate on areas with highest failure potential:
 - Where sediment can build up
 - Concentrated flow areas
 - Steep cut and fills
 - Around outfalls
- Document conditions and required actions
- Notify/provide report copies to all parties
- Follow up with enforcement

Removing ESC Practices

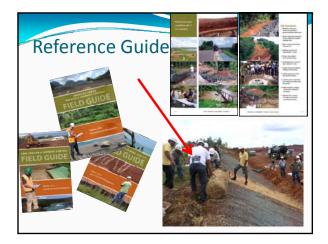
No site can be closed out until:

- Temporary practices removed
- Permanent stormwater management in place
- Construction waste removed/properly disposed
- Vegetation established on all bare soil areas
- All ditches and slopes are stable
- Final inspection

Transition to Permanent Stormwater Management

- Install permanent practices as designed
- Protect practices from sediment during construction activities
- Maintain drainage paths during final site grading and paving
- Make sure all permanent practices are inspected before temporary practices are removed
- Remove sediment and debris before "turning on" practices

97



7. Effective Program Elements

- Regulations and Standards
- Reference Guide
- Inspections
- Enforcement
- Training/Certification
- Incentives
 - Equipment for rent
 - Demonstrations on public projects

Regulations/Standards

- Adopt regulations that require ESC standards at all construction sites
- Adopt minimum ESC standards to be applied

specti	on	IS			1818 1
necklists					2121 3 3
nird-party in EROSIG	1		E	XHIBIT 2 ROL - INSP	ECTION AND MONITORING
To be filled out by impector	weekly and a	ther each sign	ificant storm fi	ir the appropr Inspector	
Location of Potential Erosion, Sedimentation,			Erosion/Sedimentation		Describe Condition and Recommend Corrective Action
Blockage or Damage	Yes	No	Yes	No	
Silt Curtains/Fences					
Sediment Traps					
Drainage Ditches/Swales					
Drainage Ditches/Swales Culverts/Storm Drains/Catch Basins					
Culverts/Storm					
Culverts/Storm Drains/Carch Basins					
Culverts'Storm Denins Catch Basins Roads					
Culverts Storm Denins Catch Basins Roads Slopes Berns Coverings Stafface					
Culverts Storm Denins Catch Basins Roads Slopes Berns Coverings Starface Protection Vegetation	nponsible for	erosion contr	of plan:		

Session I: Stormwater BMPs for Islands

2011 Pacific Island Watershed Institute

Description: Review stormwater performance measures and standards across the Pacific islands, and discuss site design techniques to reduce stormwater generation at new development and redevelopment projects. This session will introduce a variety of large and small structural best management practices (BMPs), how they can be adapted to island settings, and ways to make them better.

Speakers:

- Rich Claytor, Horsley Witten Group
- David Hirschman, Center for Watershed Protection

Resources:

- HI DOT. 2007 Stormwater Manual. <u>www.coralreef.gov/transportation/permanentmanual.pdf</u>
- HI Commission on Water Resource Management. 2008. Handbook for Stormwater Reclamation and Reuse BMPs <u>www.state.hi.us/dlnr/cwrm/planning/hsrar_handbook.pdf</u>
- Stormwater resources (including pollution prevention guidance for businesses and homeowners) <u>http://stormwaterhawaii.com/resources/</u>
- 2006 CNMI/Guam Stormwater Management Manual www.deq.gov.mp/article.aspx?secID=6&artID=55
- RI Stormwater Design and Installation Manual. 2010. <u>www.dem.ri.gov/pubs/regs/regs/water/swmanual.pdf</u>
- VA Runoff Reduction Method and Stormwater Design Manual. <u>www.dcr.virginia.gov/stormwater_management/stormwat.shtml</u>
- Center for Watershed Protection (CWP). 2008. Post-construction Guidance Manual. <u>www.cwp.org</u>
- CWP. 1998. Better Site Design: A handbook for changing development rules in your community <u>www.cwp.org</u>
- United States Nav. 2010. Low Impact Development Design Manual <u>www.wbdg.org/ccb/DOD/UFC/ufc 3 210 10.pdf#search=%22low%20impact%20development%20ufc%22</u>

Topics/Notes:

- 1. What are my island's performance measures, standards, and environmental drivers?
- 2. Site planning techniques to minimize stormwater impacts.
- 3. Large and small BMPs and island adaptations (see Article handout)
- 4. Ways to improve BMP effectiveness
- 5. Site design group exercise (see Exercise handout)

Pacific Islands Watershed Institute: Session I Stormwater BMPS for Islands

Site Design and BMP Exercise

First, review the site plan provided:

Take a look at the <u>design features</u> of the site such as the roadway layout, sidewalks, lot geometry, stormwater management/conveyance system, and potential impacts to natural resources, including groundwater.

Question 1) Identify the site design features you think may alter hydrology and negatively impact natural resources, as well as features that help protect the environment.

Good Site Design Features	Not so Good Site Design Features

Question 2) Next, Evaluate the proposed stormwater management and conveyance system and identify measures you think meet or don't meet resource protection objectives.

Stormwater BMPs that Work	Suggested BMP Improvements

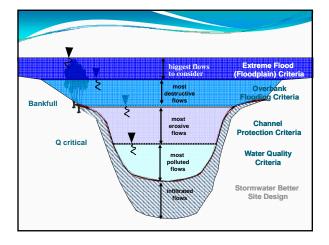
Question 3) Finally, suggest what site design revisions/modifications might serve for better resource protection, better water quality, and stabilized hydrology.

Island Stormwater Design Objectives

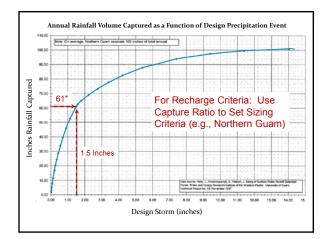
- Keep sediment and pollutants out of coral reefs
- Promote recharge rates to replenish groundwater resources
- Keep pollutants from entering groundwater
- Prevent serious floods and mudslides
- Protect streams and wetlands

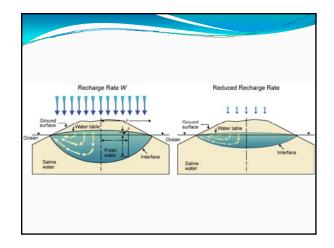
Treat rain as a resource!

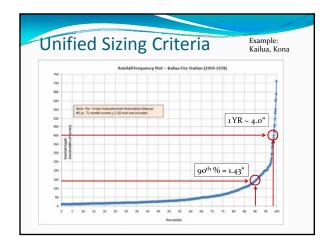
Design Storm Events

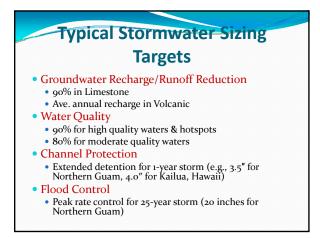


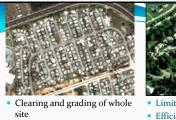
Storm events are ranked in terms of their statistical return frequency. For example, a storm that has a 50% chance of occurring in any given year is termed a "two-year" storm.


Similarly, a storm that has a 10% chance of occurring in any given year is termed a "ten-year storm." For example: A ten-year storm for Northern Guam occurs when a storm event produces 10.0 inches of rain in a 24-hour period.


Rainfall Data Used to Derive Stormwater Management Criteria


- **Small-sized**, **frequently occurring storms** account for the majority of rainfall events that generate stormwater runoff <u>AND</u> for a significant portion of the annual pollutant loadings.
- **Larger storms** also have impacts channel degradation, surface erosion, gullying, and flood damage.



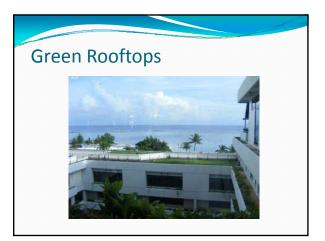


- Wide streets and cul-de-sacs
- Lots of impervious coverRemoval of native soils
- Enclosed drainage systems for stormwater conveyance
- Reliance on "hole-in-theground" detention basins & ponding basins

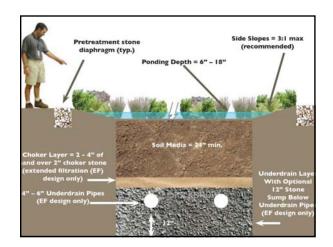
- Limited clearing Efficient use of impervious
- cover
- Taking advantage of natural hydrology
- Combination of small & large
- stormwater practices

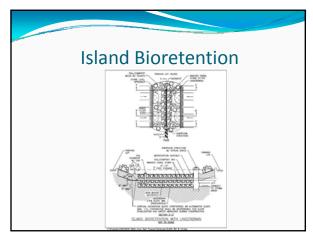
 Conservation of natural areas





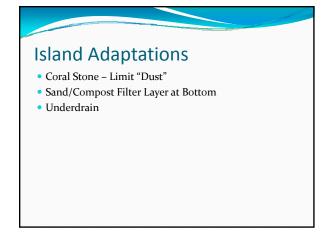


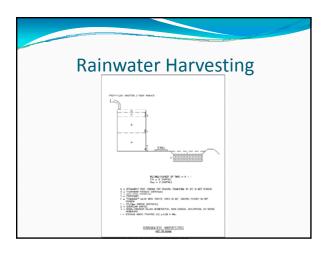




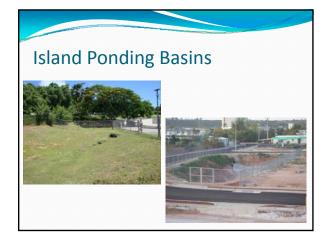
Pretreatment

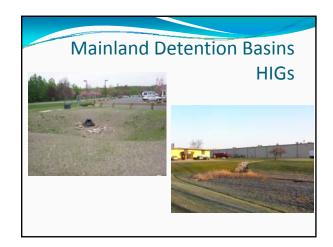

- Nature of pretreatment depends on size of bioretention area and type of flow it experiences
 - **Concentrated flow**: two cell design with a small trapping "forebay" and level spreader
 - Sheet flow: grass filter strip, stone diaphragm, stone ring berm





Benefits Criteria: Groundwater Recharge (if slow release to secondary practice) Water Quality Partial or Full Channel Protection/Flood Control (depends on tank size and drawdown) Efficient use of site

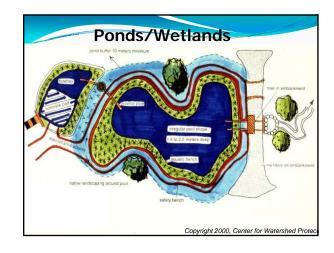

- Moderate cost
- Save potable water supply e.g., Northern Aquifer
- Uses rainfall as a resource


Site Design & Small Practices Take-Home Points

- Reduce impacts by design reduce impervious & site disturbance
- Use small practices close to the source in combination with larger, end-of-system practices
- Use specifications to ensure proper design & to adapt to island conditions

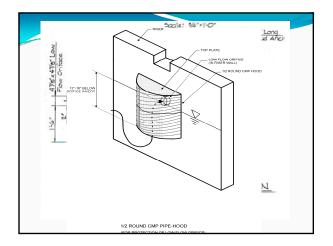
Remember the key Island technical factors?

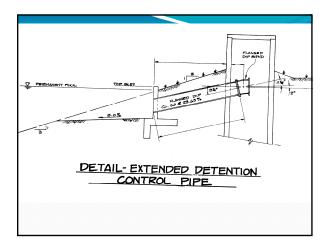

- Hydrology (Rainfall, infiltration, evapotranspiration);
- Terrain;
- Geology soils and geologic formations;
- Vegetation
- Near shore environment;
- Development patterns;
- Local capacity and experience; and
- Construction materials.

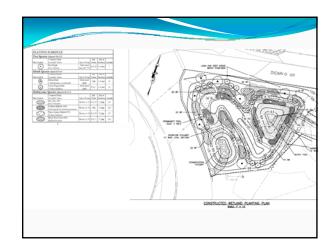


Design Features of Ponds/Wetlands (for enhanced pollutant removal and overall performance)

- Treatment of WQvMultiple treatment pathways
- Pond geometry
- Sediment forebay
- Non-clogging outlet structure
- Assess to outlet structure
- Emergency spillway
- Embankment specifications
- Inlet/outlet protection Pond benches/safety
- features
- Landscaping plan
- Buffers and setbacks
- Maintenance access and considerations

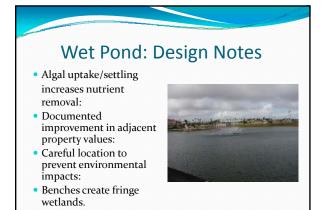






Micropool ED Pond: Design Notes

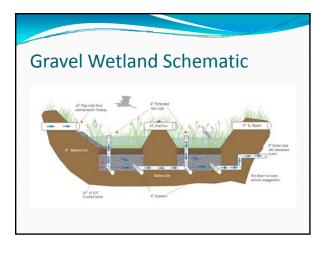
- Micropool and forebay prevent resuspension and clogging;
- Useful for fingerprinting;
- Lower community acceptance;
- Inundation may harm vegetation;
- Cost effective urban retrofit option.



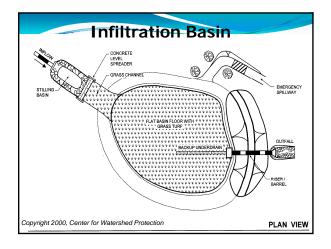
Shallow Marsh: Design Notes

- Deeper forebay and micropool are essential;
- Shallow depths over remaining surface area;
- High surface area to volume ratio;
- Complex internal microtopography;
- Potential wildlife habitat creation;
- Consumes most land of any pond/wetland option.

Multiple Pond System: Design Notes

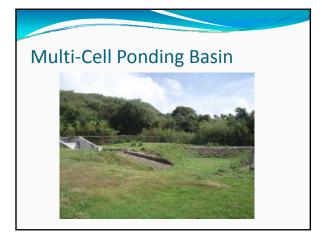

- Highest pollutant removal observed of any pond option
- Long flow path is key in removal
- Useful option at complex or linear sites

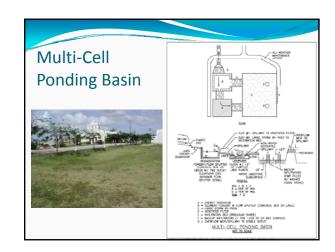
by gabions or earthen embankment

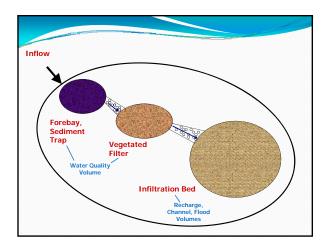


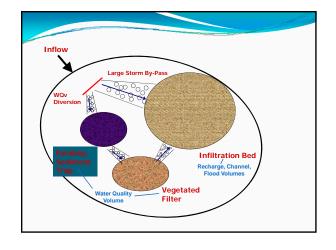
Submerged Gravel Wetland: Design Notes Adapted from wastewater treatment applications; • Algal growth on rock surfaces promotes greater uptake;

 Additional maintenance includes pump-out of "muck."









Ensuring BMP Effectiveness (Cont.)

Construction

- Clearly defined construction specifications and bidding documents;
- Contractor expertise (minimum qualifications/experience identified in bid docs);
- Construction layout by a surveyor;
- Pre-construction meeting and regular progress meetings;
- Construction observations at clearly identified milestones (by the designer where possible – using checklists);
- Interim and final As Built plans.

Take Home Points BMP Effectiveness

- Amount of runoff reduction achieved by practice;
- Estimated pollutant removal based on prior monitoring
- Contributing drainage area to a BMP
- Annual precipitation fraction that is captured by a BMP
- Criteria employed for the design/implementation
- Construction inspection/enforcement capabilities of watershed managers
- Maintenance performed over the long term

ADAPTING STORMWATER BMPs FOR TROPICAL WATERSHEDS AND CORAL REEF PROTECTION

David Hirschman and Kelly Collins

INTRODUCTION

Due to its proximity to the Indo-Pacific center of marine biodiversity, the coral reef environments in Guam and the Commonwealth of the Northern Marianas Islands (CNMI) host some of the richest ecosystems among the United States (U.S.) jurisdictions (Burdick et al., 2008). However, negative impacts of existing island development on coral reef ecosystems are already known and evident. Pollution from stormwater runoff and construction activities, problems with aging infrastructure (e.g., sewer overflows), overfishing, and recreational overuse have contributed to problems including reef sedimentation, excessive algal growth, coral bleaching, and coral disease. The result has been a significant decline in the health of the coral reef ecosystems. According to the Guam Division of Aquatic and Wildlife Resources, fish populations associated with the Coral Reef alone declined 70% from 1987 to 2002 (Turgeon et al., 2002).

As part of the U.S. military base realignment and closure (BRAC) activities, the island of Guam is anticipating receiving an estimated 40,000 additional military personnel and their families, and an additional 20,000 civilians over the next few years, or approximately a 30% increase over the existing population. As a result of this realignment, the island will be undergoing rapid development over a very short time period. In order to better protect sensitive coral reef ecosystems against future land-based sources of pollution, the Center for Watershed Protection and the Horsley Witten Group worked with the Guam Coastal Management Program, Guam Environmental Protection Agency, and the National Oceanic and Atmospheric Administration Coral Program to produce guidance on designing and building innovative and island specific better management practices (BMPs) appropriate for use in tropical climates.

Islands are a challenging environment for stormwater BMP designs due to a limited availability of local materials, tropical rainfall patterns, wet and dry seasons, and limestone and volcanic underlying soils. Of paramount interest is promoting BMP designs that can help protect coral reef ecosystems as land is developed. This involves addressing pollutants of concern (sediment, nutrients, bacteria, temperature) and controlling the quantity and quality of discharges to the near shore environment and its tributaries.

The original *CNMI* and *Guam Stormwater Design Manual* was produced by the Horsley Witten Group in 2006 (Horsley Witton Group, 2006). The *Manual* outlines standards and specifications for meeting "post-construction" stormwater criteria. These criteria outline the storage requirements for practices that are installed on a permanent basis once site construction is complete (thus the term "post-construction"). Various criteria apply to groundwater recharge, water quality protection, downstream channel erosion protection, and flood control. Since the *Manual* was produced, various efforts have taken place to incorporate the BMPs into policy and practice on the islands.

The current effort involves expanding the list of BMPs to include several innovative practices and adapting designs for the island environment. The new BMPs include: (1) multi-cell ponding basins, (2) island bioretention, (3) permeable parking, and (4) rainwater harvesting. New design specifications include information on BMP feasibility, sizing computations, design procedures, materials, construction guidance, landscaping, maintenance, and standard details.

Currently, the most commonly designed BMPs on the island are large, end-of-pipe ponding basins designed primarily to infiltrate water. Few of these practices are designed with pretreatment in mind, despite the rapid infiltration of stormwater into the groundwater drinking supply. Many of these ponds may not meet island infiltration and water quality criteria.

At the beginning of this process, the project team facilitated a design charette involving design professionals, architects, and engineers who were active in site planning and plan review. The purpose of the charette was to solicit ideas and input on BMPs that would be most appropriate for use in Guam. Feedback from this charette was used to advance the development of the four BMP specifications. It is anticipated that these specifications and fact sheets will be incorporated by reference into the *Manual*, and the designs will support the post-construction stormwater criteria in the *Manual* and also in Guam's proposed revisions to erosion control regulations.

It is also quite feasible that these specifications, along with other tropical BMPs, can be adapted to other tropical locations, such as the Caribbean. Modifications would be needed to account for local materials and rainfall patterns.

Tropical islands that are experiencing development pressure are in critical need of stormwater management practices that can help protect coral reef ecosystems and near-shore environments ... four innovative stormwater practices adapted to the tropical environment of Guam are presented

Each section below briefly describes the practice and its island adaptations along with an example of the typical details. The full specification document should be consulted for all the particular details on a certain practice.

PRACTICE NO. 1: MULTI-CELL PONDING BASINS

This specification adapts the most commonly used stormwater practice in the limestone regions of CNMI and Guam (the "ponding basin," see Figure 1) to meet the water quality requirements of the *Manual*. The adaptations involve incorporating multiple cells in order to manage all of the required sizing criteria. Whereas a ponding basin constructed in limestone generally provides recharge (until clogging occurs) and manages runoff volumes for large storm events, it does not provide water quality treatment and is not acceptable as a stand-alone system under the requirements of the *Manual*. However, by adding a pretreatment and a filter cell to the system, all requirements can be met.

Figure 1. Example of an Existing Ponding Basin on Guam With a Forebay (concrete structure on left).

This system combines the concepts of bioretention as well as infiltration to meet all of the stormwater management goals (see Figure 2 for standard details). Multi-cell

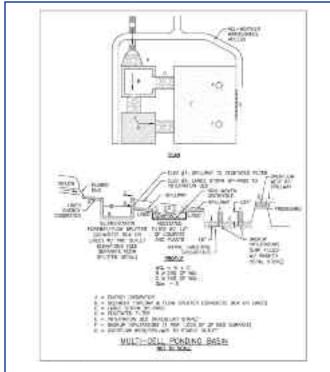


Figure 2. Plan View and Profile for a Multi-Cell Ponding Basin.

ponding basins are very versatile because the multiple cells can be designed with varying geometry to fit into different development sites. This system is generally suitable for most land uses, as long as the drainage area is limited to a maximum of about ten acres.

PRACTICE NO. 2: ISLAND BIORETENTION

Bioretention was developed in the U.S. Mid-Atlantic mainland area and was originally designed to replicate the pollutant removal mechanisms of a forested ecosystem. Since that time, the concept has been adapted to other regions and climates. This specification adapts the concept of bioretention to the tropical island environment of CNMI and Guam. The adaptations involve substituting native materials for filter bed components that are unavailable and would be expensive to import, modifying designs to account for wet and dry seasons, and specifying locally available plant materials (see Figure 3).

Figure 3. Example of "Coral Stone" Filter on Guam. This contains same (but on all) of the adaptations for Island Bioretention.

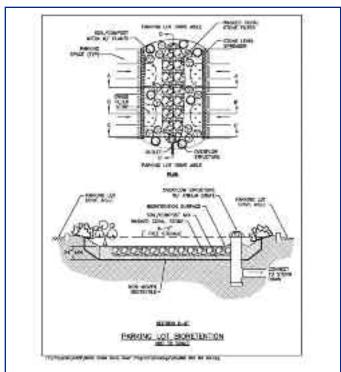
There are two basic design adaptations for "Island Bioretention:" (1) **Infiltration Design** – Design without an underdrain for sites where soil testing indicates suitable infiltration rates, relatively low water tables, and a low risk of groundwater contamination (e.g., not located at a stormwater hotspot). Figure 4 provides an example of the standard details; and (2) **Filter Design** – Design with an underdrain for sites where native soils do not percolate as readily (less than 0.5 inch per hour). These designs still incorporate some level of infiltration, especially during the dry season, by providing a stone "sump" below the underdrain pipe.

PRACTICE NO. 3: PERMEABLE PARKING AND WALKWAYS

Permeable parking and walkways are alternatives to the conventionally paved surfaces they allow stormwater runoff to filter through voids in the pavement surface into an underlying stone layer, where it is temporarily stored and/or infiltrated (Figure 5). All permeable pavements have a similar structure, consisting of a surface pavement layer, a bedding layer, an underlying stone layer, a filter layer and a geotextile installed on the bottom. While a variety of permeable pavement surfaces are available,

Adapting Stormwater BMPs for Tropical Watersheds and Coral Reef Protection ... cont'd.

this specification focuses on the use of permeable interlocking concrete pavers (PICP) and concrete grid pavers (CGP), which are more commonly found in CNMI and Guam (Figure 6).



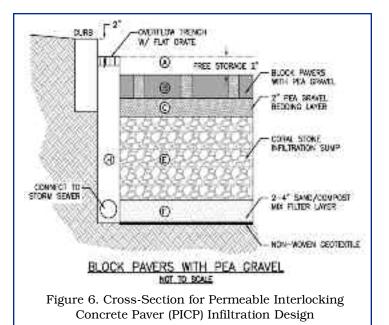

Figure 4. Example of a Plan and Profile for the Island Bioretention Infiltration Design.

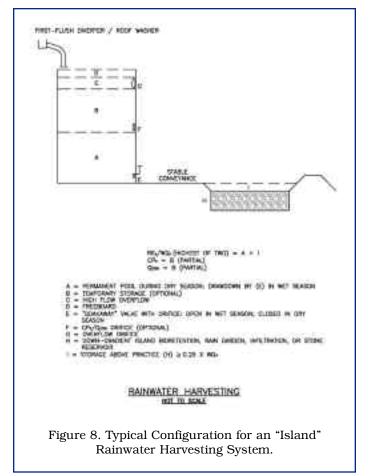
Figure 5. Example of Permeable Parking on CNMI.

The thickness of the underlying stone layer is determined by both a structural and hydrologic design analysis. This layer serves to retain stormwater and also supports the design traffic loads for the pavement. As with Island Bioretention, there are two basic design adaptations for Permeable Parking and Walkways – the infiltration design (no underdrains) and the filter design (with underdrains).

This type of system is recommended for CNMI, Guam, and other tropical locations to reduce the volume of stormwater generated and encourage groundwater recharge. These practices may also provide some water quality benefit as stormwater is filtered through a soil/compost mix layer.

PRACTICE NO. 4: RAINWATER HARVESTING

Rainwater harvesting systems intercept, divert, and store rainfall for future use (Figure 7). Rainwater that falls on a rooftop is collected and conveyed into an aboveground or below-ground storage tank where it can be used for nonpotable water uses and on-site stormwater infiltration. Nonpotable uses may include flushing of toilets and urinals inside buildings, landscape irrigation, exterior washing (e.g., car washes, building facades, sidewalks, street sweepers, fire trucks, etc.), fire suppression (sprinkler) systems, supply for chilled water cooling towers, dust control, replenishing and operation of water features and water fountains, and laundry, if approved by the local authority. Replenishing of pools may be acceptable if special measures are taken, as approved by the appropriate regulatory authority.


Figure 7. Example of Rainwater Harvesting on Guam.

In certain cases, harvested rainwater can be used for small-scale potable water supply if approved by the proper regulatory authority. Appropriate treatment systems to treat water to potable standards would need to be added

Adapting Stormwater BMPs for Tropical Watersheds and Coral Reef Protection ... cont'd.

to the system components. Many tropical locations have historic and cultural traditions of rainwater harvesting, so the current specification is an attempt to revive the practice and adapt it specifically for stormwater management.

This type of system is recommended for CNMI, Guam, and other tropical environments to (1) reduce the volume of stormwater generated and (2) to relieve pressure on the potable water supply. This can be particularly relevant for Guam's northern aquifer region, where both recharge and reducing demand may be important objectives in light of increased demand for this resource. Rainwater harvesting (Figure 8) can be adapted to the wet season and dry season conditions by adding a "soakaway" valve to help drain the tank during the wet season and/or adjusting the indoor and outdoor uses of the water.

CONCLUSION

Tropical islands are a challenging environment for stormwater best management practice (BMP) design due to a limited availability of local materials, tropical rainfall patterns, wet and dry seasons, and limestone and volcanic underlying soils. Of paramount interest is promoting BMP designs that can help protect coral reef ecosystems as land is developed. This involves addressing pollutants of concern (sediment, nutrients, bacteria) and controlling the quantity and quality of discharges to the near-shore environment and its tributaries. Tropical jurisdictions should continue to explore and adapt stormwater BMP designs to match local conditions and applications. The four practices presented in this article may be a good starting point, and other "tropical" BMP adaptations are also encouraged.

ACKNOWLEDGMENTS

The authors would like to acknowledge the substantial contributions of our design team partners from the Horsley-Witten Group: Anne Kitchell, Michelle West, and Rich Claytor. Tom Schueler from the Chesapeake Stormwater Network also contributed ideas and specification language to these island designs. Alex Foraste was instrumental in developing content for the rainwater harvesting specification.

REFERENCES

- Burdick, D., V. Brown, J. Asher, C. Caballes, M. Gawel, L. Goldman, A. Hall, J. Kenyon, T. Leberer, E. Lundblad, J. McIlwain, J. Miller, D. Minton, M. Nadon, N. Pioppi, L. Raymundo, B. Richards, R. Schroeder, P. Schupp, E. Smith, and B. Zgliczynski, 2008. Status of the Coral Reef Ecosystems of Guam. Bureau of Statistics and Plans, Guam Coastal Management Program. iv + 76 pp.
- Horsley Witten Group, 2006. CNMI and Guam Stormwater Management Manual. Commonwealth of the Northern Marianas Islands and Guam. *Available at* http://www.deq.gov.mp/ article.aspx?secID=6&artID=55
- Turgeon, D.D., R.G. Asch, B.D. Causey, R.E. Dodge, W. Jaap, K. Banks, J. Delaney, B.D. Keller, R. Speiler, C.A. Matos, J.R. Garcia, E. Diaz, D. Catanzaro, C.S. Rogers, Z. Hillis-Starr, R. Nemeth, M. Taylor, G.P. Schmahl, M.W. Miller, D.A. Gulko, J.E. Maragos, A.M. Friedlander, C.L. Hunter, R.S. Brainard, P. Craig, R.H. Richond, G. Davis, J. Starmer, M. Trianni, P. Houk, C.E. Birkeland, A. Edward, Y. Golbuu, J. Gutierrez, N. Idechong, G. Paulay, A. Tafileichig, and N. Vander Velde, 2002. The State of Coral Reef Ecosystems of the United States and Pacific Freely Associated States: 2002. National Oceanic and Atmospheric Administration/National Ocean Service/National Centers for Coastal Ocean Science, Silver Spring, Maryland, pp. 189-194.

A	UTHOR LINK	David J. Hirschman		
		Program Director		
		Center for Watershed Protection		
		919 2nd Street, SE		
		Charlottesville, VA 22902		
		(434) 293-6355/Fax: (410) 461-8324		
_				
	E-MAIL	djh@cwp.org		
		kac@cwp.org		

David J. Hirschman has served as a Program Director for the Center for Watershed Protection since 2005. In this capacity, he helps coordinate the Center's stormwater, better site design, local restoration, and training projects, focusing on technical and program tools for use by local and state governments. He has over 25 years of experience with water resources and stormwater management in the public, private, and nonprofit sectors.

 $\diamond \diamond \diamond$

Session J: Stormwater and Pollution Prevention Field Trip

2011 Pacific Island Watershed Institute

Description: Rotate through three site stations to: 1) learn the ins and outs of rain garden design, construction, and maintenance; 2) explore the various applications of compost socks for managing construction site runoff and long-term slope protection; and 3) put on your pollution prevention hat and identify structural and non-structural approaches for managing pollution at a nearby boat landing.

Speakers:

- Todd Cullison, Executive Director, Hui o Koolaupoko, <u>www.huihawaii.org</u>
- Adrian Sanchez, Certified Erosion Control Hawaii
- Michelle West, Horsley Witten Group

Agenda/Notes:

- 1. Instructions to group and compost sock Installation Video
- 2. Divide into three groups
- 3. Rotate through three stations. You will have approximately 45 minutes at each station.

Station 1. Rain Gardens. Meet in classroom. See handouts.

Station 2. Silt socks Demonstration. Meet at designated area in He'eia parking lot

Station 3. Meet at boat landing. <u>See handouts/map. The best route for walking to the sites will be announced.</u> <u>Please be extremely careful walking to the boat landing.</u>

Station 1: Rain Gardens

The following information is a summary from several rain garden guides. *The Oregon Rain Garden Guide*, (Oregon State University, Sea Grant) was heavily referenced for this information and may not be accurate for the State of Hawaii or other Islands. However, it will provide PIWI participates with the basics of building a rain garden. For more information, see:

http://seagrant.oregonstate.edu/sgpubs/onlinepubs/h10001.pdf

Step 1. Map your site. Draw a schematic of your property. Include structures such as trees, retaining walls, other property, cesspools, etc

Step 2. Determine location of your rain garden

- ✓ Several issues need to be considered before determining the exact location of your rain garden, before building, your rain garden should be:
 - Two feet from a crawl space or slab
 - Three feet from a sidewalk/driveway
 - Six feet from a basement
 - Ten feet from a retaining/decorative wall
- ✓ Additionally, you should not build your rain garden:
 - On top of a septic drain fields or cesspool, provide a minimum of 50 feet between your rain garden and these structures
 - Areas that stay consistently wet during the rainy season, this indicates poor drainage
 - In soils that have drainage of ½ inch per hour infiltration or bedrock
 - Under trees or within close proximity that roots will be damaged during digging

Step 3. Percolation test. The last step in determining the location of your rain garden is based on a simple soil percolation test. You should not build a rain garden if the soil has less than ½ infiltration per hour. To conduct a soil percolation test, follow the attached sheet. Use the following chart as a guidance based on your results:

Drainage rate	Recommendation
Less than 1/2 inch per hour	Do not build a rain garden on this site without professional assistance
Between 1/2 and 1	Low infiltration for a rain garden. Homeowners may want to build a
inch/hour	larger or deeper garden, or likewise plan for additional overflow during
	high-rainfall storms
Between 1 and 1 1/2	Adequate infiltration for a rain garden. Plan for sufficient overflow
inches/hour	during high-rainfall storms
Between 1 1/2 and 2	Adequate infiltration for a rain garden. Plan for sufficient overflow
inches/hour	during high-rainfall storms
Faster than 2 inches/hour	High infiltration for a rain garden. Design should feature fewer
	moisture-loving and more drought-tolerant plants. The rain garden may
	also be sized to hold smaller amounts of water, have a deeper mulch
	layer, or have denser plantings.

Chart: OSU, Sea Grant: The Oregon Rain Garden Guide

Determine the size of your rain garden. The size of your rain garden is based on the amount of impervious surface you want to treat as well as rainfall intensity. Most rain garden document research suggest a 10% sizing. Using the example below, if your treatment area is 200 square feet, your rain garden should be ten percent of the treated area.

(Width of Surface Area x Length of Surface Area) x.10 = size of rain garden	
	Example:
	20 eet x 10 feet = 200 sq ft. x.10 = 20 sq ft.

What you will need for Construction

- ✓ List of tools
 - Shovel(s)
 - Hammer(s)
 - Gloves

- o 3' levelo Wheel barrow
- 10" x 10" blue tarp
- Rope or garden hose T
 - Two stakes
 - Survey line (two is best)
- Line Level (two is best)
- Measuring Tap
- Calculator

✓ Call for utilities location

(to outline footprint)

- ✓ Delineate your rain garden with rope, garden hose, surveyors paint
- ✓ Excavate to desired depth
- ✓ Connect water source (underground pipe, rock line channel, etc.)
- Construct over flow. Make sure overflow is not directed at other property of other structures as noted above.

Choosing the Plants

- ✓ Plants will be specific to each Island and rainfall regime. Check with University Extension, NRCS or other resources to determine best match for locale climate
- ✓ Don't plant invasive vegetation in your rain garden
- ✓ Don't use edible plants when collecting drainage from roads, driveways, or parking lots

Don't forget about Maintenance

- ✓ Weeding
- ✓ Plant replacement

Notes

Testing Soil for Rain Gardens

The quality of your soil—its ability to hold and drain water is one of the most important considerations for understanding your site and sizing a rain garden. How fast your soil drains depends on its ability to absorb water at the surface and then allow it to percolate down into the lower layers. The constituent parts of the soil, organic matter, sand, silt, and clay all play into this ability. Testing soil also helps you find out if high water tables and underlying bedrock may make a rain garden impractical on a site.

There are two steps for assessing your site's soil. First, you will dig a hole and test the soil's infiltration ability. Then you will use your senses to learn about the consistency of the soil and its constituent parts.

Testing Infiltration: the Simple Approach

- 1. Dig a test hole in the area where you expect to build your rain garden. Try to site the hole so that it is in what you think will be the middle of your garden. If your garden will be 6 inches in depth, then excavate to 6 inches (or 9 or 12 inches respectively). Set the spoils from your hole aside for a "feel" test later.
- 2. If you run into a hard layer that cannot be penetrated with a shovel or, you come across water in the hole, then stop and note this. Rain gardens should not be sited over high water tables, so your site is inappropriate. If your hard surface is rock, you may also want to move the rain garden to another location where you don't have that layer.
- 3. Fill the hole with water to just below the rim. Record the exact time you stop filling the hole and the time it drains completely.
- 4. Refill the hole again and repeat step 3 twice more. The third test will give you the best measure of how quickly your soil absorbs water when it is fully saturated as it would be during a rainy period of the year or during a series of storms that deliver a lot of rainfall in a short period of time. Building a rain garden to handle these conditions is a way to be safe that you will not cause damage to your own or a neighbor's property.
- 5. Divide the amount the water dropped by the amount of time it took for it to drop. For example, if the water dropped 1 inch in 2 hours, then 1 divided by 2 equals 0.5 inch per hour of infiltration.

Testing Infiltration: the Modeling Approach

- 1. Dig a hole to the proposed rain garden depth (6, 9 or 12 inches).
- 2. Fill with water, measure depth, record time and depth.
- 3. Measure depth and record time at regular intervals until water drains completely. If the water drains quickly, then check it at least every minute. If it drains slowly, check it every 10 minutes for at least an hour or until all of the water is gone. Record the distance the water had dropped from the edge of the hole.
- 4. Calculate infiltration rate for each time period = depth (inches) / time (hours)
- 5. Repeat process at least two more times or until the slowest measured rate does not vary.
- 6. The slowest rate measured is the "design" infiltration rate and can be used with a sizing table and precipitation map, provided separately.

Note that some jurisdictions require the slowest rate to be divided by 2 as a safety factor, thus increasing the size of the rain garden.

Interpreting the Infiltration Test(s)

If your soils drained water between 0.5 and 2 inches per hour, then you have adequate infiltration for a rain garden. If you drained faster than 2 inches/hour, then you will need to plan for more drought-tolerant plants in your rain garden, since it will likely absorb most of the water at the inflow points.

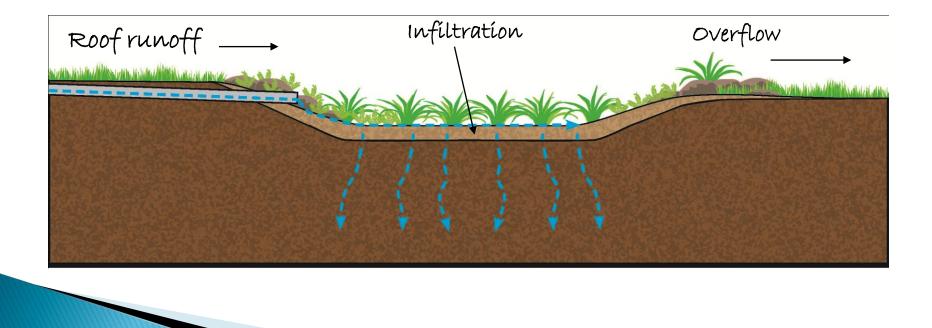
If you have less than 0.5 inches per hour of infiltration, then you should not build a rain garden at that site. Most local governments will not allow a rain garden to be installed in a site where soils are poorly drained (below 0.5 inch/hour), over high water tables, or over close to the surface bedrock.

Using the "Feel" Test for Soil Consistency

- 1. Take a handful of the soil you have excavated from your infiltration test. Pulverize it in your hand and remove any bits of organic matter or obvious rocks.
- 2. Wet it with a small amount of water and rub it between your thumb and index finger. Don't saturate it until it is runny mud. You might feel stickiness, grittiness or smoothness. The grittier the feel, the more sand is present in your soil. The slicker the soil, the more clay in it. Smooth soils are sometimes an indicator of a fine silt or loam. Discard the soil.
- 3. Next, take another sample in your hand. Wet it until it has the consistency of dough. You should be able to form a ball with the soil in your palm that holds together. If you cannot get the ball to form, then your soil is very sandy. In most soils, however, you should be able to create a rough ball.
- 4. Knead the soil together between your thumb and fingers. Again, remove any obvious organic matter or rocks. You should be able to form a ribbon with the soil. As you build the ribbon, it will either hold together or break off. If the soil breaks quickly in the process, then it has a high sand content. If the ribbon forms quickly and stays strong, it has more clay.

Interpreting the Soil Consistency Test and Using it with the Infiltration Test

Soils that have a high sand content will drain quickly and might need to have some amendments added to increase moisture holding ability during the dry periods. Alternatively, you may want to plant more drought tolerant plants in rain gardens with sandy soils.


Soils with high clay content will drain slowly or sometimes, not at all. High clay soils will need some organic matter added to increase infiltration. Conversely, you may need to plan for a larger rain garden (doubling the size for example) or a constructing a deeper basin (12" instead of 6" for example) that will hold more water. With high clay soils, plan for plants in that type of soil that will be flooded more often and for longer periods. Even on the coast, however, these plants may need to be irrigated in the summertime or should be tolerant of drought during a 2-3 month period.

To protect ocean health by restoring the 'āina' mauka to makai

Pacific Island Watershed Institute Session J. Stormwater Field TB arden?

A rain garden is a constructed depression planted with native or noninvasive vegetation that allows storm water from impervious surfaces such as roofs and driveways, to collect, briefly store and then infiltrate into the groundwater.

Pacific Island Watershed Institute Session J:Stormwater Field Trip Outline of Presentation

- What is a Rain Garden?
- Examples of Rain Gardens
- Rain Garden located at He'eia State Park
- Elements of a Rain Garden (outside with a garden hose)

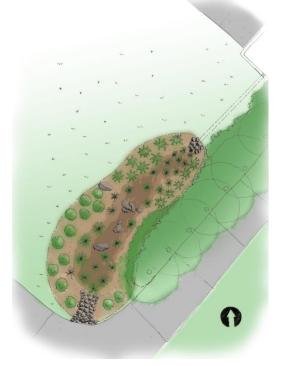
Pacific Island Watershed Institute Usesion Astornyate Field Cipations

Pacific Island Watershed Institute Session J:Stormwater Field Trip HOK's Rain Garden Co-op

- Developing Hawai'i Rain Garden Manual
- Building/cost sharing 50 rain gardens with Koʻolaupoko homeowners

Pacific Island Watershed Institute Session J:Stormwater Field Trip Rain Garden at He'eia State Park

- University of Hawai'i Sea Grant
- Oregon State University Sea Grant
- Kama'āina Kids
- EPA/DOH 319 funded



Pacific Island Watershed Institute Session J:Stormwater Field Trip Elements of a Successful Rain Garden

- Mapping your site (house, structures, vegetation, etc.)
- Determining location of your rain garden
- Percolation test
- Size of your rain garden
- Construction
- Plants
- Maintenance

Station 3: Pollution Prevention at the Boat Landing

1. What are the potential sources of pollution at this site?

2. What could be done to reduce pollutants generated at this site?

A. Education

B. Non-structural

C. Structural

Session K: Engaging Stakeholders

2011 Pacific Island Watershed Institute

Description: Discuss when and how to involve elected/appointed officials, military officials, mayors, agencies, watershed groups, and other public stakeholders in the watershed planning and implementation process.

Speakers:

- Laurel Woodworth, Center for Watershed Protection
- Joyce Beouch, Palau Conservation Society <u>www.nature.org/ourinitiatives/regions/asiaandthepacific/micronesia/explore/watershed-</u> <u>alliance.xml</u>
- Alyssa Miller, Malama Maunalua, Oahu, Hawaii http://malamamaunalua.org/about-us.asp

Topics/Notes:

- 1. The world of watershed stakeholders
- 2. Engaging political officials: Babeldoab Watershed case study
- 3. Public involvement and engaging funders: Lessons from Maunalua
- 4. Group discussion: Bringing the challenging ones to the table
 - a) Who are the key stakeholders in your watershed?

- b) Which ones are the most challenging to engage?
- c) Tips for bringing them to the table:

Stakeholder Resources

Pacific Island-focused

NOAA. Participatory Learning and Action (PLA) – Resource Guide for Practitioners. <u>http://data.nodc.noaa.gov/coris/library/NOAA/CRCP/project/10126/PLA_Resource_Guide_Practitioners_Am_Samo</u> a.pdf

Locally-Managed Marine Areas: A guide to supporting Community-Based Adaptive Management. Available from the Locally-Managed Marine Area (LMMA) Network. <u>http://lmmanetwork.dreamhosters.com/files/lmmaguide.pdf</u>

Collaborating for Sustainability: A Resource Kit for Facilitators of Participatory Natural Resource Management in the Pacific. Published by International Waters Project, Pacific Regional Environment Programme (SPREP). <u>http://www.sprep.org/iwp/documents/IWP_Complete_version_001.pdf</u>

Participatory Learning and Action – A Trainer's Guide for the South Pacific. Authored by Pretty, J.N., Guijt, I., Thompson, J., Scoones, I. (1995). IIED Participatory Methodology Series.

General Information

Getting In Step: Engaging and Involving Stakeholders in Your Watershed. Available from the US Environmental Protection Agency.<u>www.epa.gov/owow/watershed/outreach/documents/stakeholderguide.pdf</u>

Getting In Step: A Guide to Conducting Watershed Outreach Campaigns. Available from the US Environmental Protection Agency. <u>www.epa.gov/owow/watershed/outreach/documents/getnstep.pdf</u>

Watershed Management Starter Kit. Available from the Conservation Technology Information Center (CTIC). Phone: (765) 494-9555. <u>http://ctic.org/resourcedisplay/111/</u>

People, Partnerships and Communities Series. Available from the Natural Resources Conservation Service (NRCS). http://www.ssi.nrcs.usda.gov/publications/#ppcs

Stakeholder Coordination. Available from the National Association of State Departments of Agriculture (NASDA). <u>http://www.nasda.org/nasda/nasda/Foundation/protect/guide.html#stake</u>

Community Toolbox: Decision Making Tools. Available from the National Park Service (NPS) Rivers, Trails and Conservation Assistance Program. <u>http://www.nps.gov/phso/rtcatoolbox/dec_actionagenda.htm</u>

EPA Office of Water, Office of Wetlands, Oceans, and Watersheds, Watershed Outreach Webpage. <u>http://www.epa.gov/owow/watershed/outreach/outreachnonjs.html</u>

River Talk! Communicating a Watershed Message. Available from the River Network. Phone: (503) 241-3506. <u>https://www.rivernetwork.org/marketplace/product_details.php?item_id=55346</u>

Culvert Action: How to Interest Your Local Media in Polluted Runoff Issues. Available from the Lindsay Wildlife Museum. Phone: (925) 935-1978.<u>http://www.wildlife-museum.org/</u>

Sourcebook for Watershed Education. Available from Acorn Naturalists. Published by the Global Rivers Environmental Education Network. <u>http://www.acornnaturalists.com/store/SOURCEBOOK-FOR-WATERSHED-EDUCATION-P7183C0.aspx</u>

Water Words That Work http://waterwordsthatwork.com/

Session L: Implementation and Funding

2011 Pacific Island Watershed Institute

Description: What are key factors in ensuring the successful implementation of watershed plans and projects. Discuss tips for identifying and securing implementation funding in Pacific islands.

Speakers:

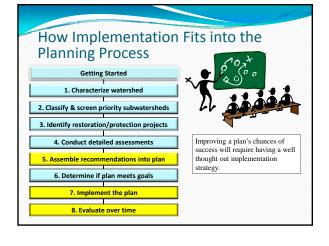
- Rich Claytor, Horsley Witten Group
- Hudson Slay, EPA

Resources:

Topics/Notes:

1. Incorporating implementation strategies in your watershed plan

2. Key factors in ensuring successful implementation of restoration projects


3. What are your likely funding options?

4. Keys to successful grant writing

Topics to cover

- Implementation Traps and Tips
- Who are key implementation partners
- Securing long-term funding
 - Sources
 - What funders want to know
- Components of an Implementation Strategy/Plan
- Getting projects in the ground

Implementation Traps 1. Lack of political will and community support; 2. Programmatic inertia and agency "turf" battles; Empty piggy banks; 3. Non-targeted education and training; 4. Inability to show success (i.e. local demo, 5. monitoring, missed windows of opportunity); Too many sticks and not enough carrots; 6. Undiscovered watershed champion; 7. Loss of momentum and evolving community 8 concerns; What are some others you have experienced?

Implementation Tips

- 1. Involve key implementation partners early, encourage formal agreements;
- 2. ID programmatic overlaps and gaps, integrate into daily municipal operations;
- 3. Be creative in securing long-term funding (i.e. federal, provincial, private, local cost-sharing)
- 4. Choose appropriate messages, target pollutants/behaviors.

More Implementation Tips

- 5. Get easy projects in the ground fast, starting at home;
- 6. Find a balance between regulated and voluntary stewardship;
- Designate person/group to coordinate implementation efforts;
- 8. Track progress and re-evaluate strategy over time.
- 9. Lets hear some of YOUR IDEAS!

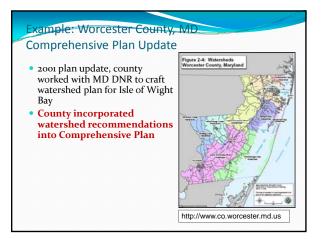
Hijack Someone Else's Radar Screen (instead of inventing a new one)

- Budgeting;
- Procurement;
- Design Phase;
- Construction Management;
- Focus on Recurring Processes.

Existing Process/Projects as Potential Hijacking Candidates

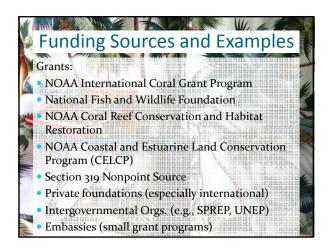
- Agency Budget Planning;
- Comprehensive Plan;
- Site Plan Review;
- Rezoning Requests;
- Water Supply Planning/Mitigation;
- TMDL;
- NPDES Phase 1 & 2 Permits;
- Municipal Operations (good housekeeping).

More Hijacking Candidates


- Capital Improvement Program (CIP);
- Utility Planning/CIP/Maintenance;
- Transportation Planning/CIP/Maintenance Activities;
- Parks Planning/CIP/Maintenance;
- WTP Permitting/Nutrient Trading;
- Mitigation Fee-In-Lieu Programs.

ID Programmatic Overlaps & Gaps; Integrate Plan into Daily Municipal Operations

- Reviewed existing regulations and program tools for James City County as part of watershed plan;
- Held roundtable for recommending changes to development codes ;
- Site plan review now requires a check against subwatershed management plans



Pacific Island Watershed Institute Session L: Implementation & Funding

Pacific Island Watershed Institute Session L: Implementation & Funding

Implementation Projects: Construction Summary

- Good planning (concept plans, integrated with site design);
- Good design and agency review;
- Clearly defined construction specifications and bidding documents;
- Contractor expertise (minimum qualifications/experience identified in bid docs);
- Construction layout by a surveyor;
- Pre-construction meeting and regular progress meetings;
- Construction observations at clearly identified milestones (by the designer where possible – using checklists);
- Interim and final As Built plans.

Project Implementation Maintenance Summary

- Good planning, design & construction;
- Designer should envision maintenance requirements;
- Plan sheet(s) showing project locations/types and maintenance access (easements);
- O&M plan includes required inspection and maintenance frequency and estimated annual costs;
- Make short-term maintenance;
- Implement long-term vegetation management;
- Incorporate progressive enforcement and corrections;
- Instill owner inspection co-responsibility

Implementation Plan

- Priority Projects
- Costs & Funding Sources
- Responsible Parties & Partners
- Phasing for Design & Construction (Schedule)
- Strategic Actions

