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Abstract Future widespread coral bleaching and

subsequent mortality has been projected using sea surface

temperature (SST) data derived from global, coupled

ocean–atmosphere general circulation models (GCMs).

While these models possess fidelity in reproducing many

aspects of climate, they vary in their ability to correctly

capture such parameters as the tropical ocean seasonal

cycle and El Niño Southern Oscillation (ENSO) variability.

Such weaknesses most likely reduce the accuracy of pre-

dicting coral bleaching, but little attention has been paid to

the important issue of understanding potential errors and

biases, the interaction of these biases with trends, and their

propagation in predictions. To analyze the relative impor-

tance of various types of model errors and biases in pre-

dicting coral bleaching, various intra- and inter-annual

frequency bands of observed SSTs were replaced with

those frequencies from 24 GCMs 20th century simulations

included in the Intergovernmental Panel on Climate

Change (IPCC) 4th assessment report. Subsequent thermal

stress was calculated and predictions of bleaching were

made. These predictions were compared with observations

of coral bleaching in the period 1982–2007 to calculate

accuracy using an objective measure of forecast quality,

the Peirce skill score (PSS). Major findings are that:

(1) predictions are most sensitive to the seasonal cycle

and inter-annual variability in the ENSO 24–60 months

frequency band and (2) because models tend to understate

the seasonal cycle at reef locations, they systematically

underestimate future bleaching. The methodology we

describe can be used to improve the accuracy of bleaching

predictions by characterizing the errors and uncertainties

involved in the predictions.

Keywords Coral bleaching � Climate change �
Coupled ocean–atmosphere general circulation models

Introduction

Tropical corals live in conditions close to their upper

thermal limit (Hoegh-Guldberg 1999). When this threshold

is crossed, bleaching can occur. Bleaching is the whitening

of reef-building corals due to a reduction in their symbiotic

dinoflagellate zooxanthellae and/or loss of the pigments in

the symbionts (Brown 1997). Bleaching can cause coral

mortality, and reduce growth, coral cover, species diver-

sity, and disease resistance (Hoegh-Guldberg 1999; Fitt

et al. 2001). Although other causes for coral bleaching

exist, bleaching due to anomalous high sea surface tem-

peratures (SSTs) is of greatest concern.

Mass bleaching, the whitening of entire reef tracts or

regions, such as occurred in 1998 and 2005, is attributed to

anthropogenic climate change superimposed on natural

variability (Donner et al. 2007). Climate change is projected

to cause bleaching to occur annually on reefs all over the

globe within 20–40 years (Hoegh-Guldberg 1999; Donner

et al. 2005), and in the Caribbean, biannually or more fre-

quent by 2020 in a business as usual scenario (Donner et al.
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2007). Threats to coral reefs are more complex than just

bleaching. Ocean acidification (Kleypas et al. 1999;

Silverman et al. 2007), another product of anthropogenic

climate change, reduces calcification rates and threatens

coral reef health. Local stressors, including pollution and

fishing, damage reefs. All these threats interact with the

resilience of reefs and their ability to recover from

bleaching to shape the ecosystems future. Here, we limit

this study on predicting mass bleaching and we aim to

evaluate the importance of various intra- and inter-annual

frequency bands on coral bleaching. We do this by ana-

lyzing data and models utilizing a band-pass time series

analysis approach. This will elucidate errors in models and

enable improvements in coral bleaching predictions.

Accurate coral bleaching forecasts can aid managers

of marine protected areas to decide where to focus reef

management efforts (Marshall and Schuttenberg 2006;

McClanahan et al. 2007). Accurate forecasts are also nec-

essary to assess what levels of greenhouse gases prevent

dangerous, perhaps irreversible, climate change impacts for

corals (Reaser et al. 2000; Smith et al. 2009) and what

levels allow coral reef ecosystems to adapt to climate

change, as required by the 2nd article of the United Nations

Framework Convention on Climate Change (Oppenheimer

and Petsonk 2005).

Predictions of bleaching frequency have been made

using coupled ocean–atmosphere general circulation model

(GCM) SSTs (Hoegh-Guldberg 1999; Sheppard 2003;

Donner et al. 2005, 2007; Hoeke et al. 2011). GCMs produce

projections of future climatic conditions based on green-

house gas emission scenarios that represent different

emission paths. These models have, besides their varying

‘‘accuracy’’ (or ‘‘skill’’) in simulating such parameters as the

tropical ocean seasonal cycle and El Niño Southern Oscil-

lation (ENSO) variability, other deficiencies. As we describe

below, although forecasts abound, little effort has gone into

quantitatively assessing and understanding the factors that

influence predictive ‘‘skill’’.

Ultimately, the goal of this work is to objectively identify

the major sources of error in the climate models that most

impact the skill and quality of bleaching forecasts, so that

the models will be improved. This is an extension of our

prior work (van Hooidonk and Huber 2009a), in which the

skill of bleaching predictive techniques was systematically

analyzed for the first time. There are several predictions

and hind-casts of coral bleaching in the literature. They

range from simple fixed thermal thresholds (Hoegh-Guld-

berg 1999; Sheppard 2003; Sheppard and Rioja-Nieto 2005)

and accumulative stress indexes (Gleeson and Strong 1995;

Goreau and Hayes 1994; Donner et al. 2005; Donner 2009)

to complex multivariate models (Maina et al. 2008). These

predictions depict a range of possible futures, some of the

methods and results are highlighted here.

In the seminal work of Hoegh-Guldberg (1999), fixed

local thresholds were established by analyzing literature

reports on bleaching. These thresholds were used in com-

bination with GCM output to predict future bleaching.

The annual mean SST of GCMs in most models differs

from observations; this bias prevents comparison between

a measured climatology and predicted SSTs. Therefore,

the mean was corrected in this and some other studies.

Data were used from older models, the ECHAM3/LCG,

ECHAM4/OPYC3a, and the CSIRO-DAR model. One

midrange Intergovernmental Panel on Climate Change

(IPCC) greenhouse gas emission scenario, IS92a, was used.

In this scenario, effective CO2 concentration increases at

1% per year after 1990. These older generation models are

characterized by a coarse spatial resolution, some as low as

5.6� 9 5.6�. At this resolution, one grid cell, or pixel, in

the tropics is over 600 km wide. More importantly, the

ECHAM3/LCG model does not reproduce ENSO vari-

ability sufficiently (Voss et al. 1998). Underestimating this

variability reduces the number of projected El Niño events.

Because El Niño events cause anomalously warm SSTs at

reef locations, they can cause coral bleaching (Hoegh-

Guldberg 1999; Gill et al. 2006). Thus, underrating ENSO

variability could cause predictions of bleaching to shift to

later dates. Still, this study predicts yearly bleaching on all

studied locations by 2030.

In Donner et al. (2005), bleaching was projected for all

global reef locations by calculating degree heating months

(DHMs) from the UK Meteorological Office HadCM3 and

National Center for Atmospheric Research (NCAR) PCM1

GCMs. This was done for two emission trajectories, the

Special Report on Emissions Scenarios (SRES) B2 and A2

emissions scenarios. Based on an assumed global bleaching

threshold of one DHM, biennial bleaching is projected for

95–98% of all reefs by 2050–2059 in the A2 scenario.

More recently, Donner (2009) projected bleaching using

DHMs calculated from two other models (Geophysical

Fluid Dynamics Laboratory (GFDL) models CM2.0 and

CM2.1) and five emission scenarios. These scenarios range

from a commitment scenario, in which greenhouse gas

concentrations are kept at year 2000 levels, to the fossil

fuel–intensive A2 and A1F1 scenarios. In the A1B sce-

nario, severe bleaching in all reefs globally is projected at

least once per 5 years around 2035.

In three studies that project future reef health, the

annual mean SST was corrected and the amplitude of the

annual cycle scaled to that of observations (Sheppard

2003; Sheppard and Rioja-Nieto 2005; Hoeke et al.

2011). In Hoeke et al. (2011), the SSTs from the SRES

A1B scenario of 17 GCMs were used as input data for a

coral growth and mortality model predicting changes in

coral cover in the Hawaiian archipelago for the period

2000–2099.
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Uncertainties associated with SST variability in GCMs

It is well established that coupled GCMs have different

transient and equilibrium sensitivities of temperature to

increases in greenhouse gas concentrations, and conse-

quently, different trends in mean values over the twentieth

century and beyond (Meehl et al. 2007). They also differ in

their abilities to correctly capture other aspects of SST over

the observational era. There is, for example, considerable

difference in the amplitude of the SST seasonal cycle

(Covey et al. 2000; Wu et al. 2008), the representation of

the inter-tropical convergence zone (Lin 2007a), and the

El Niño and Southern Oscillation (ENSO) variability (Lin

2007b), amplitude, period, and spatial patterns (Guilyardi

2006; Guilyardi et al. 2009). These differences can in part

be explained by an unresolved theoretical explanation

of ENSO dynamics. The range of ENSO variabilities in

models extends from regular bi-annual ENSO events to

variability close to the observed 2–7 years periodicity

(Guilyardi et al. 2009). Another bias, evident in many

models, is the lack of phase locking. El Niño and La Niña

anomalies are largest in the boreal winter, and often models

show little or no links to the seasonal cycle, or show

El Niño and La Niña anomalies in the wrong part of the

annual cycle (Guilyardi et al. 2009). Current GCMs do not

show agreement in the sign of change in ENSO variability

(Vecchi and Wittenberg 2010) in observations of the 20th

century or in predictions. Because ENSO events can cause

tropical SST anomalies conductive to bleaching (Lough

2000; Gill et al. 2006; Eakin et al. 2009), differences in

projections of ENSO can have considerable impacts on

predictions of coral bleaching.

The mass coral bleaching of interest in this study arises

from crossing an upper threshold temperature, and hence,

accurate prediction of bleaching events is sensitive to

changes in the annual mean and changes in extremes of

temperature. In the unperturbed climate, the upper thresh-

old must only rarely be crossed; natural thermal bleaching

events must arise upon the superposition of a rare unusu-

ally strong low-frequency event (such as an El Niño event)

on top of seasonal temperature maxima (summer). This

phenomenon, where the combination of two signals results

in a stronger signal than either one alone, is known as

constructive interference. Thus, in the anthropogenically

perturbed state, in which trends in mean temperature are

well established, accurately predicting bleaching over the

next century must involve accurate predictions of the

constructive interference of the trend in the mean and any

trends in the modes of seasonal and inter-annual to multi-

decadal variability.

Consequently, the problem of predicting thermally

induced coral reef bleaching can be decomposed into dis-

crete components: first, having an accurate climatology and

a thermal threshold above which bleaching is projected to

occur; second, long-term (century) trends in annual mean

temperatures averaged over the whole tropics; third, pre-

dicting the changes in tropical temperature seasonality on

long-time scales (the long-term trend in seasonality);

fourth, predicting the spatial pattern of these trends; and

fifth, predicting the inter-annual, decadal, and finally multi-

decadal variability around these trends.

A failure in any of these components and in their

relative phasing leads to invalid forecasts. As an example,

a model that correctly captures every aspect of climate,

with only a seasonal cycle that has an amplitude smaller

than observations, may predict bleaching many decades

after it should occur, because the model never crosses the

bleaching threshold. A model, with overly strong multi-

decadal variability as the only deficiency, might forecast

bleaching earlier in the century, followed by an incorrect

period of no or little bleaching, followed by overly frequent

bleaching.

These biases could potentially be accounted for, but

bias removal requires an in-depth analysis of the different

modes of variability and of trend evolution. This has never

been attempted in studies that predict bleaching. To sum-

marize, GCMs are being used to project future bleaching,

but the influence of model error and biases on the skill and

timing of predictions is unknown. What has been done is

bias removal in terms of mean temperature at each location,

and in three cases, (Sheppard 2003; Sheppard and Rioja-

Nieto 2005; Hoeke et al. 2011) also a correction of the

amplitude of the annual cycle has been made. The inter-

action of all the other modes of variability on bleaching

prediction remains largely uncharted territory.

The goal of this study is to evaluate the importance of

various modes of variability on predicting coral bleaching.

We evaluate modes ranging from the 3 months harmonic to

events with a 5 years periodicity. GCM SSTs were avail-

able only as monthly data, and the observed SSTs were

from a data set for the period 1982 to present. These data

sets provide an upper (5 years) and lower limit (3 months)

for the frequencies analyzed. Variability with periodicities

shorter than 3 months is probably of limited importance for

predicting bleaching due to the autoregressive nature of

tropical SSTs. Decadal and lower frequency modes of

variability cannot be analyzed in this study due to the

length of the observed SST time series.

To assess the importance of various modes, the skill

of bleaching predictions for 24 GCMs in the IPCC 4th

assessment report was quantified. First, certain frequency

bands of observed SSTs, such as the annual cycle, were

replaced with those bands from GCMs, and then, thermal

stress was calculated and subsequent predictive quality

assessed. Here, it is assumed that all reported bleaching

occurred due to thermal stress, and that, corals do not adapt
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to temperature stress by shuffling of their symbionts or any

other mechanism. This assumption is made knowing that

there is debate on if and if so how much shuffling of

symbionts occurs in the wild (Berkelmans and van Oppen

2006; Hoegh-Guldberg et al. 2002; Hoegh-Guldberg 2005;

Goulet 2006). Coral mortality following a bleaching event

varies with species (Loya et al. 2001) and locations (Brown

1997). Together with other factors such as connectivity

between reefs (Hughes et al. 2003) and irradiance

(Anthony et al. 2007), complex interactions can arise

affecting recovery and resilience. The observational data

set of coral bleaching used here does not include consistent

data on coral mortality. Because of this limitation, we

make no statements on subsequent coral mortality and do

not include any speculative adaptive capability of the

corals.

With better observations of coral reefs, recording

bleaching and non-bleaching, and more knowledge on

expected rates of adaption, these assumptions and simpli-

fications would not have been necessary. These assump-

tions are shared weaknesses of most current bleaching

predictions.

We show that bleaching forecasts are sensitive to every

frequency band, from 3 months to multi-annual. Espe-

cially, the annual cycle and ENSO frequency band are

vital to getting correct predictions. Lastly, implications

for projecting future bleaching events are drawn, and

recommendations for predicting bleaching with GCMs are

given.

Methods

This study requires having accurate observed SST distri-

butions, SST distributions from coupled general circula-

tion models from 20th century simulations for compar-

ison, modeled SSTs for the coming century for analysis of

future impacts, and a database of bleaching observations

in order to establish bleaching thresholds and test pre-

dictive skill.

Observed SSTs

Observational SST data for the period 1982–2007 were

obtained from NOAA Optimal Interpolated SST version 2

data (Reynolds et al. 2002) provided by the NOAA/OAR/

ESRL PSD, Boulder, Colorado, USA, from their web site at

http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.

v2.html. These SST data are computed weekly at 1� 9 1�
resolution combining in situ and satellite data. Missing

values, such as near-coast pixels, were filled in by nearest-

neighbor values derived by solving Poisson’s equation via

relaxation.

Modeled SSTs from GCMs

SST temperature data were retrieved for the 20C3M and

SRES A1B scenarios for each available GCM from the

World Climate Research Programme’s (WCRP’s) Coupled

Model Intercomparison Project phase 3 (CMIP3) multi-

model data set at http://www.esg.llnl.gov. In the 20C3M

scenario, greenhouse gasses increase as observed through

the 20th century. This 20th century experiment enables the

comparison of observations with modeled SST, and thus

characterization of the skill of the GCMs. The individual

models do not perfectly resemble observations of SST, but

moderate skill has been demonstrated (Lin 2007b; Reifen

and Toumi 2009) and they have previously been used in

projections for large marine ecosystems (Wang et al.

2010).

The SRES A1B scenario represents a future world of

very rapid economic growth, low population growth, and

rapid introduction of new and more efficient technology

with balanced fossil/non-fossil energy sources. It is a sce-

nario with CO2 emissions in the middle to high range

compared to the other scenarios. For a description of all

emissions in this scenario, see Nakićenović and Swart

(2000). It has been used to project coral reef futures

(Donner et al. 2007; Donner 2009; Baskett et al. 2010;

Hoeke et al. 2011). All models were re-gridded to a 1�91�
resolution using bilinear interpolation. Missing values were

filled in by nearest-neighbor values derived from solving

Poisson’s equation via relaxation. If multiple runs were

available for a model, the different members of the

ensemble were averaged. For practical reasons, the

monthly data were converted to weekly data by selecting

for each date in the observed weekly time series the closest

value from the GCM data. Thus, each GCM value was

repeated for *4 times, and no weekly variability was

added.

Creating hybrid observed and GCM SST time series

To estimate the influence of errors in each of the GCMs

frequency bands separately, we use hybrids of GCM and

observed SST time series. In this way, it was possible to

only retain the frequency band of interest from the GCM

and use all other frequencies from observations. A hybrid

was created by selecting a certain frequency range of the

GCMs, such as the annual frequency band. Then this fre-

quency band was subtracted from the observations and the

two were combined to create a hybrid time series. This

hybrid only differs in the selected frequency band from

observations.

To select the frequency band in question, a band-pass

filter was used. Band-pass filters remove all data except for

a specified frequency band. Here, a Lanczos filter was used
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with cut-offs at 2 and 4, 5 and 7, 8 and 10, 11 and 13, 16

and 20, and finally 24 and 60 months (Duchon 1979). The

24–60 months frequency is an exception. This band

includes El Niño variability, and while some GCMs might

accurately simulate El Niño variability and amplitude, the

timing of major ENSO events is not aligned with observed

events. When the timing of ENSO events is incorrect, mass

bleaching episodes will be projected to occur in different

years then observed, and thus drastically decrease skill of

projections. To circumvent this issue, a different method

was employed for the 24–60 months bandwidth. First, the

desired 24–60 months band was selected. Then, the vari-

ance of this signal was calculated for the GCMs and

observations at each location. The ratio between the two

variances was multiplied with the 24–60 months signal

from the observations. This product of band pass–filtered

signal and ratio of variances was then used to replace the

24–60 months bandwidth in the original observations.

The resulting hybrid time series for each GCM contain

all the characteristics of the observations, and only the

24–60 months variance of each GCM.

To illustrate the effect of the annual cycle on future

mass bleaching, the GFDL CM2.1 model SRES A1B sce-

nario run was chosen. The annual cycle of this model was

replaced with the annual cycle of each of the other 23

models and that of observations. For the annual cycle from

observations, OISST V2 data for the years 1982–2007 were

used. All 25 SST time series were mean corrected to the

mean of the original model. An overview of the data

sources used per experiment is given in Table 1.

Degree heating weeks

To calculate degree heating weeks (DHWs; Gleeson

and Strong 1995), the positive anomalies above the

climatological maximum expected summertime tempera-

ture (MMM) for the previous 12 weekly values were

summed up. In this study, the MMM is defined as the

warmest monthly temperature from the observed climatol-

ogy, derived from data for years 1971–2000 (Reynolds et al.

2002). For a more detailed methods description, see van

Hooidonk and Huber (2009a). The most important differ-

ence from the NOAA method (http://www.osdpd.noaa.

gov/PSB/EPS/method.html) is that, here, DHWs start to

accumulate as soon as the temperature exceeds the maxi-

mum expected summertime temperature. In the NOAA

method, DHWs start to accumulate when the temperature

reaches at least 1�C above the expected summertime tem-

perature. Compared to the NOAA Coral Reef Watch

method, this overestimates DHW values. The method,

where only anomalies 1�C above the MMM are used,

produces fewer years with DHWs above zero and reduces

the skill (see van Hooidonk and Huber 2009a). By keeping

the method similar to our previous work, we can reuse the

previously reported skill of predictions made with the

observations of SST in this study.

Quantifying quality of predictions

The quality of forecasts can be quantified using objective

skill scores such as the Peirce skill score (PSS). PSS has

been successfully used in quantifying the skill of coral

bleaching predictions based on observations of SST (van

Hooidonk and Huber 2009a). It uses the frequencies of

correct predictions (hits), bleaching events that were not

predicted (misses), false alarms, and correct predictions of

non-occurrence to calculate a score. This score ranges from

-1 to 1, a perfect predictive technique scores 1, random

guessing will score 0 (Jolliffe and Stephenson 2003). To

get the frequencies of each of these possibilities, predicted

bleaching episodes have to be compared to observations of

bleaching. An optimal DHW threshold was established for

each reef location by comparing historical observed DHW

values with observations of bleaching (see van Hooidonk

and Huber 2009a). Then, each incidence, where the hybrid

time series’ maximum yearly DHW value exceeded the

Table 1 Data used in the experiments, observations are from the optimal interpolated sea surface temperature data set (OISST), and the GCMs

are the SSTs from the 20th century runs of the coupled ocean–atmosphere general circulation models

Experiment Data from GCMs Annual cycle from

3 months (Fig. 4) 2–4 months variability Observations

6 months (Fig. 4) 5–7 months variability Observations

9 months (Fig. 4) 8–10 months variability Observations

12 months (Fig. 4) 11–13 months variability Annual cycle from each of the GCMs as it is

included in the 11–13 months variability

16–20 months (Fig. 4) 16–20 months variability Observations

24–60 months (Fig. 4) 24–60 months variance Observations

Annual cycle (Fig. 6) GFDL CM2.1 model SRES A1B scenario From each of the GCMs, and for one treatment

from observations
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optimal DHW threshold at that location, was counted as a

predicted bleaching event. These predicted events were

compared to observations of bleaching from the period

1982–2007, obtained from http://www.reefbase.org, to

calculate the quality of the predictions.

The observational database of coral bleaching is com-

prised of contributions by individuals. Although a standard

form is available, no standardized procedure or global

coordinated effort exists to date. Non-bleached reefs are

underreported, and bleaching episodes in remote areas

might have been missed (van Hooidonk and Huber 2009b).

Here, it is assumed that when no records of bleaching exist,

no bleaching happened.

Results

SST time series

Spectral analysis comparing observed and modeled tropical

SST time series shows that models generally show less

variability than observations. The GCMs underestimate the

annual and semi-annual frequencies and show a spurious

quad-annual variability (Fig. 1a). Time series of SSTs can

be considered an autoregressive process, where at a given

time, the SST is strongly dependent on the SST of the

previous time step. Therefore, SST time series can be

considered as ‘‘red noise’’, and a Markov power spectrum

can be used to determine the significance of selected

periodicities (Dyer 1971). Averaged overall reef locations,

the annual and semi-annual peaks are significant deviations

from the 5 to 95% confidence interval of the Markov

spectrum. As an example, the result of one of the filtering

treatments is shown in Fig. 1b. When only the

11–13 months frequencies of the GCMs were retained, the

frequency response is similar to the observations at all

frequencies except around the annual cycle.

The filtering treatments resulted in different synthetic

time series of SSTs at each location. To provide a concrete

example of the effect of filtering, two hybrid time series

and observational data are plotted (Fig. 2) for a location in

the Caribbean (12.5�N 69�W). This figure contrasts two

GCMs with different annual cycles. The filtered SST time

series with the 12 months frequency band variability added

from the GCMs show that the NCAR PCM1 GCM

(Fig. 2a) has a larger amplitude of the seasonal cycle

compared to observations, and the IAP FGOALS 1.0G

GCM has a seasonal cycle smaller than the observations at

this location (Fig. 2b).

Degree heating weeks

After correcting the annual mean SST of GCMs, GCMs

with a larger amplitude in annual cycle than observed SSTs

will show higher annual maximum SSTs and this results in

higher calculated DHWs (Fig. 3a). GCMs that exhibit a

lower amplitude of annual cycle, compared to observa-

tions, can produce lower DHWs (Fig. 3b). To clarify,

(a)

(b)

Fig. 1 Frequency spectra

of unaltered GCMs and for

observations of SST (a) and

spectra of observations of SST

where the frequencies around

the annual cycle

(11–13 months) were replaced

by those frequencies from

GCMs (b). SST data are

averaged over all locations with

reefs, and only the period

1983–1999 was used. On the

x-axis, the frequency is plotted

in cycles per year, to the left on

the axis, lower frequencies are

plotted, and frequencies

increase to the right. The area

between the 5 and 95%

confidence bounds of the

Markov ‘‘Red Noise’’ spectrum

of the observations is shaded
gray

Coral Reefs

123

http://www.reefbase.org


consider the DHWs calculated from the filtered observed

SSTs combined with the annual frequency band of the

NCAR PCM1 GCM. Because the NCAR PCM1 model has

a larger amplitude in seasonal cycle at reef locations, the

threshold above which DHWs start to accumulate is cros-

sed more often and more DHWs accumulate (Fig. 3a).

Quality of forecasts in PSS

To quantify the importance of the differences between

modeled and observed thermal stress, an objective assess-

ment of predictive skill was made for all the treatments of

the GCMs. For all reef locations globally, the average PSS

of predictions based on observations of SST is 0.83

(van Hooidonk and Huber 2009a). This is the theoretical

maximum value that this methodology can yield for our

purposes, i.e., a model that accurately captures every

observed detail of SST variability over the 1982–2007

period can be expected to get a maximum PSS of 0.83.

Since model predictions obviously differ in many ways from

observations, we expect PSS to be reduced. For the treat-

ments where frequency bands around 3, 9, and

16–20 months of the GCMs were used, a small decrease in

PSS score can be seen, and the spread between the different

GCMs is small relative to the other treatments. This is a

small effect, because the dominant modes in SST time series

at reef locations are the annual cycle, ENSO, and possibly

other low-frequency modes. The largest reduction of skill is

found when the annual cycle of the GCMs was included.

The average PSS of all models then drops to 0.45. In other

words, the single biggest factor in improving coral reef

bleaching predictions from models is accurate reproduction

of the seasonal cycle. For the 12 months treatment, some of

the models that do well are as follows: MIROC 3.2 hires,

GFDL CM 2.1 and 2.0, IPSL CM 4, and MPI ECHAM 5.

A large reduction in skill can also be seen for the

24–60 months treatment (Fig. 4). These results reflect how

important ENSO is as a driver of coral bleaching (Lough

2000; Gill et al. 2006). The observed reduction in skill is

due to a bias in ENSO amplitude and cannot be attributed

to incorrect timing of ENSO events. Since the method

applied guaranteed that the timing of ENSO events was

correct (i.e., the same as observations), only their ampli-

tude was model predicted. The spread in skill between the

models is largest in this treatment. Some of the models that

retain large skill with this treatment are as follows: IPSL

CM 4, GFDL CM 2.0 MIROC 3.2 medres, CNRM CM 3,

and INMC 3.0. For the GCMs with smaller variance in this

frequency band than observations (ratio between variance

of GCM and observations \1), PSS drops of linearly with

decreasing ratio (R2 = 0.80). When the variance in the

ENSO bandwidth is similar or greater in the GCMs, the hit

rate does continue to increase, but the false alarm rate

increases as well.

(a)

(b)

Fig. 2 SSTs from OISST and the five treatments of the NCAR PCM1

(a) and IAP FGOALS 1.0 g (b) GCMs at 12.5�N 69�W. Data are

smoothed with a running average of 12 weeks for clarity

(a)

(b)

Fig. 3 DHWs from OISST and the six treatments of the NCAR

PCM1 (a) and GISS AOM (b) GCMs for a location in the Caribbean

(12.5�N 69�W). The thin horizontal line at DHW = 4.5 is the optimal

DHW threshold at this location based on historical observed DHWs

compared to observations of bleaching at this location
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Impact of differences in GCMs on projected bleaching

In this section, we explore how the identified sensitivities to

annual cycle and ENSO amplitude impact future bleaching

predictions. To illustrate the consequences of not correcting

the annual cycle to match observations, bleaching predic-

tions were made using the SRES A1B scenario of the GFDL

CM 2.1 model, in which the annual cycle was replaced with:

(1) the annual cycle of each of the GCMs separately and

(2) with the annual cycle from OISST V2 data based on

the period from 1982 to 2007. The GFDL CM 2.1 model

is considered to have one of the better representations of

the tropics (Gleckler et al. 2008). As a measure to compare

these different treatments, the first predicted occurrence

of bleaching twice per decade was chosen. This cut-off has

been used before as a possible unrecoverable point for coral

reefs (Donner et al. 2007). The point of this exercise is not

to determine the absolute date at which reefs reach an

unrecoverable point, but to illustrate the effect of just the

seasonal cycle on such a prediction. The results show that

most models predict the first occurrence of bleaching twice

per decade on 50% of all reef locations to occur between

2025 and 2055 (Fig. 5a). In other words, the differences in

annual cycle of GCMs introduce an uncertainty of 30 years

until bleaching begins to occur every 5 years. This differ-

ence of 30 years is of similar scale as other uncertainties,

such as caused by selecting different emission scenarios, or

uncertainties related to possible adaptive capacity of corals

to warming (Coles and Brown 2003; Rowan 2004).

As shown in Fig. 1a, GCMs exhibit lower variance

around the annual cycle. This reduced variance in sea-

sonality will reduce future projected thermal stress. When

the annual cycle of GCMs is used, most predictions show a

smaller fraction of reefs bleached at any given time in the

next century than a prediction made with the observed

annual cycle (Fig. 6).

To analyze the impact of the differences in ENSO

variance on projected future bleaching, a method similar to

that used in the analysis of the annual cycle was used. The

variance of the 24–60 months bandwidth of the GFDL CM

2.1 SRES A1B model was replaced with the variance of

this bandwidth of the other GCMs and future bleaching

was projected. The effect is smaller than the effect of the

annual cycle (Fig. 5b).

Discussion

As expected, replacing the annual cycle from observations

with the annual cycle from GCMs degrades the skill of the

Fig. 4 Peirce skill score (PSS) calculated from modified GCMs for

all reported bleached locations globally. Data are shown for observed

SSTs, where frequencies around 3, 6, 9, 12, and 16–20 months were

replaced with the same quantity from the GCMs, and for one case,

where the variance of the observations in the 24–60 months frequency

band was replaced with the same quantity of the GCMs (see Table 1)

(a)

(b)

Fig. 5 a Percentage of reef cells predicted to experience at least two

bleaching episodes in the preceding decade. Data are from the SRES

A1B scenario GFDL CM2.1 model with the annual cycle replaced

with the annual cycles of the other GCMs and observations (OISST).

b Percentage of reef cells predicted to experience at least two

bleaching episodes in the preceding decade. Data are from the SRES

A1B scenario GFDL CM2.1 model with the 24–60 months variance

replaced with this variance of the other GCMs
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predictions considerably. The skill expressed in PSS

declined to 0.45 averaged over all models compared to

0.83 for predictions made with observations of SST. Also

replacing the annual cycle, results in some models pre-

dicting bleaching 30 years earlier than other models.

Lower variance and lower amplitude of the annual cycle at

tropical reef locations (Fig. 1a) can lead to underestimates

of thermal stress on reefs (Fig. 3b). When the annual cycle

of the GFDL CM2.1 model was replaced by the annual

cycles of other GCMs and observations, most treatments

predicted levels of bleaching lower than when the annual

cycle of observations was used (Fig. 6).

In some previous studies where future bleaching has

been projected using GCMs, the amplitude or the variance

in the annual cycle has not been corrected (Hoegh-Guldberg

et al. 2002; Donner et al. 2005, 2007; Donner 2009). This

raises the possibility that those predictions of coral demise

might have been too optimistic. While it is impossible to

know precisely how seasonal cycles in the tropical oceans

will change in the future, the systematic underprediction of

seasonality in the current generation of GCMs is probably a

robust bias and causes the average GCM to predict wide-

spread bleaching 2–3 decades later (Fig. 5a).

Many models show ENSO variability that differs from

observations. ENSO periodicity in models ranges from

regular bi-annual to the observed 2–7 years periodicity, the

amplitude and spatial patterns of the anomalies are dif-

ferent, and future variability increases in some models and

decreases in others (Guilyardi et al. 2009). It is unlikely

that these biases cancel each other out perfectly in a multi-

model ensemble and some systematic biases will remain.

Most models show smaller variance in this band than

observations (Fig. 1a). Similar to the effects of the annual

cycle, modeled amplitude of ENSO lower than the

observed amplitude leads to underprediction of bleaching

and vice versa (Fig. 5b). The influence of just the variance

of the 24–60 months frequency band on predicted bleach-

ing of all reefs introduced an uncertainty on the timescale

of two decades averaged over all reef locations (Fig. 5b).

As some regions show larger SST anomalies during an

El Niño event than others, and the skill of the models in

representing ENSO is spatially heterogeneous as well, this

reported uncertainty is likely an underestimation for some

regions. Regional predictions such as made in Hoeke et al.

(2011) could be sensitive to systematic biases of ENSO in

models.

Besides uncertainties relating to future greenhouse gas

emissions, uncertainties in coral bleaching thresholds, and

uncertainties related to possible adaptive, acclimatization,

and recovery capacity by corals (Coles and Brown 2003;

Donner et al. 2005; Baker et al. 2008; Berkelmans and van

Oppen 2006), there is an uncertainty associated with the

(a)

(b)

(c)

(d)

Fig. 6 Histogram of the

percentage of reef cells

predicted to experience at least

two bleaching episodes in that

decade. Results are plotted for

the periods a 2005–2015,

b 2020–2030, c 2040–2050, and

d 2060–2070. Data are from the

SRES A1B scenario GFDL

CM2.1 model with the annual

cycle replaced with the annual

cycles of the other GCMs. The

percentage of reefs bleached

twice in that decade when the

annual cycle is replaced with

observations is marked

(asterisk)
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choice of GCM. In the suite of A1B scenario models, the

linear trend in SST averaged over all reef locations ranges

from 1.5 (NCAR PCM 1) to 3.4�C (MIROC 3 2 HIRES)

increase per century. A study comparing surface temper-

atures from GCMs with the observational HadCRUT3

data set found no evidence to suggest that a model that

performed well in the past should do so in the future as well

(Reifen and Toumi 2009). It also showed that surface

temperatures were most accurately described by an ensem-

ble of models. Selecting a small group of models that

performed best in the past did not produce the most accu-

rate representation of future surface temperatures; the best

results were obtained with larger ensembles. Other studies

support choosing larger ensembles as well (Weigel et al.

2010). This is in part because model biases are time

dependent (Li et al. 2010). This has clear implications for

future predictions of coral bleaching. To maximize skill,

not just one model should be picked but an ensemble of

all available models should be used, with equal weights

assigned to each model (Weigel et al. 2010), as is done in

Hoeke et al. (2011). But, given that the existing models

consistently underestimate the seasonal cycle, even ensem-

bles will have a persistent bias to predict widespread

bleaching to occur too late.

A number of assumptions were made in this study;

some were necessitated by the character of the observa-

tional database of coral bleaching. Better observations

could lead to different thresholds above which bleaching is

projected to occur, and thus influence the results of this

study when focusing on the timing of predicted bleaching.

However, it would not influence the main conclusion that

the annual cycle has the biggest influence on the skill of

bleaching predictions. Another limitation of current studies

that project future reef health using GCMs is that currently,

only monthly GCM values are publicly available. This

applies also to this study; in the future cases (Figs. 5

and 6), no weekly variability was present, and in the hybrid

20th century cases, weekly variability came from the

observed SSTs. Predictions made with monthly data will

show a reduced skill. While not included in this study,

spatial resolution could influence skill as well, and a sim-

ilar methodology could be employed to test this. This is,

especially, salient considering the forthcoming next

generation of GCMs in the fifth IPCC assessment report.

In the next generation models, more processes that influ-

ence climate will be incorporated, representations of chem-

istry will be improved, and vertical and horizontal resolution

will be increased (see for example http://www.cesm.

ucar.edu/models/cesm1.0/notable_improvements.html).

In conclusion, of all frequencies probed, the annual cycle

has the strongest influence on the predictive skill. Therefore,

when predicting bleaching with GCMs to obtain maximum

skill, not only should an ensemble of GCMs be used but also

the GCMs should be corrected in their mean, and most

importantly, GCMs should be corrected in their annual cycle

and their 24–60 months variability. A possible suggestion to

overcome the deficiencies of the GCMs is to use all the

information in the historical observed SSTs and only replace

the trend with that of an ensemble of GCMs.
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