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Appendix A. Automated Detection and Classification of 
Marine Mammal Vocalizations3 

A.1. Introduction 

This appendix describes the methods developed by JASCO Applied Sciences for automated 
detection of beluga whistles, bowhead moans, bowhead songs, and walrus grunts within the data 
collected during the winter 2009–2010 and summer 2010 Chukchi Sea Joint Acoustic 
Monitoring Programs (AMPs). The algorithms and their performance are described.  

Methods for automated detection and classification of marine mammal vocalizations in digital 
acoustic recordings have been developed over several decades. The variability of the target 
vocalizations influences the performance of detection algorithms. Some species such as fin and 
blue whales produce highly stereotyped vocalizations that are easier to detect automatically than 
are more variable sounds. For these stereotyped vocalizations, template-matching methods such 
as matched filter (Stafford 1995) and correlation of spectrograms (Mellinger and Clark 1997, 
2000, Mouy et al. 2009) are generally effective (Mellinger et al. 2007). Other species produce 
more variable and complex tonal sounds that are more difficult to detect and classify. Such 
vocalizations generally require band-limited energy summation for detection, followed by 
statistical classification techniques for species identification (Fristrup and Watkins 1993, Oswald 
et al. 2003). Several classification methods have been investigated for belugas (Clemins and 
Johnson 2006, Mouy et al. 2008), dolphins (Oswald et al. 2007), humpback whales (Abbot et al. 
2010), elephants (Clemins et al. 2005), and birds (Kogan and Margoliash 1998).  

The performance of detection algorithms is also influenced by the acoustical surroundings. Noise 
generated by anthropogenic activities (shipping, seismic exploration) or weather (wind, rain, 
waves) may be mistaken as biological in origin. Increased ambient noise reduces the signal-to-
noise ratio of vocalizations, making them harder to detect and classify. The sound propagation 
characteristics of the study area can alter the spectral and temporal structure of received 
vocalizations which can interfere with detection and classification algorithms that work well in a 
different propagation environment. Finally, the presence of other marine animals vocalizing in 
the frequency band of interest greatly increases the risk of misclassification. The influences of 
these factors generally also vary with time. Consequently, methods shown to be successful for a 
specific location, season, and species may not be successful under different circumstances. 

The Chukchi Sea AMP recordings contain vocalizations produced by several species of marine 
mammals, including bowhead (Balaena mysticetus), beluga (Delphinapterus leucas), gray 
(Eschrichtius robustus), fin (Balaenoptera physalus), and killer (Orcinus orca) whales, walrus 
(Odobenus rosmarus), and various ice seals. Vocalizations produced by several of these species 
share frequency bands and can occur at the same period of the year. For instance, certain 
vocalizations produced by bowheads and walrus have similar durations and frequency ranges. 
While an experienced human analyst can usually distinguish between those vocalizations, 
training an automated machine to do the same is no simple task.  

                                                 
 
3 Although many sounds made by marine mammals do not originate from vocal cords, the term “vocalization” is 

used as a generic term to cover all sounds discussed in this report that are produced by marine mammals. The 
term “call” will also be used in this sense for brevity. 
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Multiple sources contribute to ambient noise in the eastern Chukchi Sea. In winter, ice noise is 
highly problematic for automated detection algorithms. Ice cracking sounds can be emitted at 
surprisingly regular intervals and can resemble walrus knocks. Ice squeaking sounds are often in 
the frequency range of beluga vocalizations. Detection algorithms therefore must be well adapted 
to the variable and overlapping vocalizations of the species that frequent the eastern Chukchi Sea 
as well as robust against the surrounding noise background. Because many terabytes of data are 
collected during the Chukchi Sea AMPs, the automated analysis methods must also be 
computationally efficient, with computing times no less than 5 times real time (per processor). 

A.2. Methods 

A.2.1. Bowhead and Beluga Call Detection and Classification 
The bowhead acoustic repertoire includes low-frequency moans (< 1000 Hz) produced in 
summer and higher-frequency, more complex songs produced in fall and early winter (Delarue et 
al. 2009). Belugas produce tonal whistles in the 1–8 kHz frequency band (Karlsen et al. 2002). 
Because these three sound-types are produced in different frequency bands, three unique 
detectors and classifiers were created for: (1) bowhead winter (and fall) songs, (2) bowhead 
summer moans, and (3) beluga whistles. Each detector had unique frequency, duration, and FFT 
settings to optimize performance on the call type of interest. The output of each detector was 
then run through its associated classifier. 

The detection/classification process consists of the following steps (see Figure 150):  

1. Creating the normalized spectrogram. 

2. Extracting the time-frequency contours using the tonal detector developed by Mellinger et al. 
(2009). 

3. Extracting 46 features from each contour to create binary random forest models.  

4. Classifying the contours as either ‘target species’ (bowhead or beluga) or ‘other’ with the 
random forest models. 

5. Post-processing of bowhead moans and songs to combine parts of single calls that were 
detected separately.  

Once random forest models were created for bowhead moans, bowhead songs, and beluga 
whistles, they were tested on the test datasets described in Section A.2.4. The 
detection/classification process is described in detail in the following sections. 



JASCO Applied Sciences Northeastern Chukchi Sea, Joint Acoustic Monitoring Program 2009–2010 

Version 1.0 A-3 

 
Figure 150. Steps in the detection/classification process. 

Step 1: Spectrogram Processing 

The first step of the detection process was the calculation of the spectrogram. Spectrogram 
resolutions differed for each species to ensure accurate time-frequency representation of the calls 
(Table 28). To attenuate long spectral rays in the spectrogram due to vessel noise and to enhance 
weaker transient biological sounds, the spectrogram was normalized in each frequency band (i.e., 
each row of the spectrogram) with a split-window normalizer. The size of the window and the 
notch of the normalizer are indicated in Table 28. For the processing of beluga whistles the 
spectrogram was smoothed by convolving it with a 2-D Gaussian kernel (Gillespie 2004). 
Gaussian smoothing was not used for analyzing bowhead calls as it did not improve the 
performance of the contour extraction. 
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Table 28. Spectrogram parameters for each call type. 

 
Bowhead 
winter songs 

Bowhead 
summer moans 

Beluga 
whistles 

Analysis frame size (samples) 4096 4096 1024 
Overlap between frames (samples) 3500 3500 896 
FFT size (sample) 16,384 16,384 1024 
Window function Hanning Hanning Blackman 
Normalizer window size (s) 1.5 1.5 0.7 
Normalizer notch size (s) 0.4 0.4 0.1 
Gaussian kernel size (bins) n/a n/a 3×3 

 

Step 2: Contour Extraction 

Vectors representing the time-evolution of the fundamental frequency of marine mammal calls 
(referred to as contours) were extracted from the spectrograms with the MATLAB® version of a 
tonal detector developed by Mellinger et al. (2009). This tonal detector is implemented in the 
latest version of the widely-used Ishmael acoustic analysis software (Mellinger 2001). The 
algorithm works as follows based on user-defined parameters (chosen empirically, Table 29): 
First, candidate frequency peaks are identified for each time slice of the spectrogram in the 
frequency band [f0, f1]. Peaks of height h [dB] above the noise threshold (defined as the 
percentile Pbg of the spectrum values) that are the highest point in their neighborhood (n Hz 
wide) are selected. Second, successive peaks differing in frequency by less than fd are connected 
together. Third, to accurately follow simultaneous calls, the location of the next candidate peak is 
estimated by fitting a line to the most recent k seconds of the contour and looking for spectral 
peaks where the line continues. Finally, candidate contours must persist for a minimum duration 
d. Figure 150 above shows an example of contours extracted from a recording containing beluga 
whistles. 

Table 29. Contour extraction parameters for each call type. 

Symbol Description 
Bowhead 
winter songs 

Bowhead 
summer moans 

Beluga 
whistles 

Pbg Percentile for estimating background noise 50 50 50 
h Height above that estimate (dB) 2 2 1.2 
n Neighborhood width (Hz) 50 50 250 
fd Frequency difference from one step to the next (Hz) 25 25 300 
d Minimum duration (s) 0.5 0.5 0.3 
k Duration for estimating next spectral peak location (s) 0.2 0.2 0.2 
f0 Minimum frequency (Hz) 1000 50 50 
f1 Maximum frequency (Hz) 1000 50 8000 

 

Step 3: Feature Extraction 

Using custom MATLAB software, 46 features were measured from each extracted time-
frequency contour. These features describe the frequency content, duration, and shape of the 
contour (slopes, number of inflection points, etc., Table 30).  
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Table 30. The 46 features measured from each time-frequency contour. 

Feature Definition 

Beginning sweep Slope at the beginning of the call (1=positive, -1=negative, 0=flat) 
Beginning up Binary variable: 1=beginning slope is positive, 0=beginning slope is negative 
Beginning down Binary variable: 1=beginning slope is negative, 0=beginning slope is positive 
End sweep Slope at the end of the call (1=positive, -1=negative, 0=flat) 
End up Binary variable: 1=ending slope is positive, 0=ending slope is negative 
End down Binary variable: 1=ending slope is negative, 0=ending slope is positive 
Duration Call duration (s) 
Beginning frequency Frequency at start of call (Hz) 
End frequency Frequency at end of call (Hz) 
Minimum frequency, fmin Minimum frequency (Hz) 
Maximum frequency, fmax Maximum frequency (Hz) 
Frequency range fmax – fmin (Hz) 
Mean frequency Mean of frequency values (Hz) 
Median frequency Median of frequency values (Hz) 
Standard deviation frequency Standard deviation frequency values (Hz) 
Frequency spread Difference between the 75th and 25th percentiles of the frequency 
Quarter frequency Frequency at one-quarter of the duration (Hz) 
Half frequency Frequency at one-half of the duration (Hz) 
Three-quarter frequency Frequency at three-quarters of the duration (Hz) 
Center frequency, fc (fmax – fmin)/2 + fmin 
Relative bandwidth (fmax – fmin)/fc 
Maxmin fmax / fmin 
Begend Beginning frequency/end frequency 
Steps Number of steps (≥10% increase or decrease in frequency over two contour pts) 
Inflection points Number of inflection points (changes from positive to negative slope or vice versa) 
Max delta Maximum time between inflection points 
Min delta Minimum time between inflection points 
Maxmin delta Max delta/Min delta 
Mean delta Mean time between inflection points 
Standard deviation delta Standard deviation of the time between inflection points 
Median delta Median of the time between inflection points 
Mean slope Overall mean slope 
Mean positive Mean positive slope 
Mean negative Mean negative slope 
Mean absolute Mean absolute value of the slope 
Ratio posneg Mean positive slope/Mean negative slope 
Percent up Percentage of the call having positive slope 
Percent down Percentage of the call having negative slope 
Percent flat Percentage of the call having zero slope 
Up-down Number of inflection points going from positive to negative slope 
Up-flat Number of times the slope changes from positive to zero 
Flat-down Number of times the slope changes from zero to negative 
Step-up Number of steps with increasing frequency 
Step-down Number of steps with decreasing frequency 
Step-duration Number of steps/Duration 
Inflection-duration Number of inflection points/Duration 

 

Step 4: Classification 

A random forest classifier was created for each call type (bowhead winter songs, bowhead 
summer moans, and beluga whistles). Each of these random forests was a binary classifier, so 
contours were classified as ‘target species’ (i.e., bowhead or beluga whale) or ‘other’. A random 
forest is a collection of decision trees that are grown using binary partitioning of the data based 
on the value of one of the 46 features (see Table 30) at each branch, or node. Randomness is 
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injected into the tree-growing process by choosing the feature to use as the splitter based on a 
random subsample of the features at each node (Breiman 2001).  

The number of decision trees to include in each random forest was determined by empirical trials 
on datasets of calls extracted from annotated recordings. Recordings made during the previous 
year’s AMPs were used to train and optimize the random forests: winter 2008–2009 AMP data 
for the bowhead winter song and beluga whistle detectors, and summer 2009 AMP data for the 
bowhead summer moan detector. Contours were detected and extracted based on parameters 
specific to bowhead or beluga sounds (see Table 29). Sample sizes for each trial dataset are 
given in Table 31. These datasets were first randomly sampled so that each class (‘target species’ 
and ‘other’) had equal sample size. Sampling was performed such that the proportion of species 
and call-types within species in the ‘other’ class reflected those in the full dataset. Next, a 
random forest analysis was run on the sampled data. The sampling and random forest analysis 
was repeated 100 times. The output for each random forest analysis included out-of-bag error 
estimates for forests consisting of one to 800 trees. To calculate out-of-bag error, each tree was 
grown using about two-thirds of the trial data. The remaining third of the trial data was used as 
the ‘out-of-bag’ test data to evaluate the performance of the tree. The out-of-bag error estimates 
were averaged over the 100 runs (Figure 151). The point at which the out-of-bag error 
approaches its asymptote was considered the number of decision trees to include in the random 
forest because after this point, little gain was made in classification success with the addition of 
more trees. Based on these analyses, all three random forests consisted of 300 decision trees.  

Table 31. Sample size of the trial datasets used to train and optimize the random forest classifiers for 
each call type. 

Class 
Winter 2008–2009 
beluga whistles 

Winter 2008–2009 
bowhead songs 

Summer 2009 
bowhead moans 

Beluga 1295 24 0 
Bowhead 2837 3989 754 
Bearded seal 20,331 17,887 269 
Non-biological noise 9443 6491 536 
Ribbon seal 530 0 0 
Unknown 864 1148 1177 
Walrus 483 199 625 
Killer whale 0 0 13 

 



JASCO Applied Sciences Northeastern Chukchi Sea, Joint Acoustic Monitoring Program 2009–2010 

Version 1.0 A-7 

 
Figure 151. Out-of-bag (OOB) error rates averaged over 100 random forest runs (example of the beluga 
whistle classifier). 

Another output of the random forest analysis is the Gini importance index (Breiman et al. 1984), 
which measures how strongly each feature contributes to the random forest model predictions. 
The optimal subset of features to include in each random forest was determined based on this 
importance index. Feature importance was averaged over all 100 runs described above 
(Figure 152). The features most important to the model predictions were chosen for inclusion in 
the three random forests (Table 32). 

Table 32. Features included in bowhead moan, bowhead song, and beluga whistle random forests, listed 
in order of importance to the model. 

Bowhead moan Bowhead song Beluga whistle 

Minimum frequency Maximum frequency Mean frequency 
Median frequency Center frequency End frequency 
Mean frequency Beginning frequency Median frequency 
Three-quarter frequency Mean frequency Three-quarter frequency 
End frequency End frequency Center frequency 
Half frequency Mean slope Half frequency 
Quarter frequency Median frequency Maximum frequency 
Beginning frequency Quarter frequency Quarter frequency 
Duration Three-quarter frequency Minimum frequency 
Center frequency Half frequency Beginning frequency 
Mean negative slope Mean absolute slope  
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Figure 152. Gini feature importance indices, averaged over 100 random forest runs. 

Step 5: Post-Processing 

Bowhead calls recorded in the winter 2009–2010 AMP generally consisted of several harmonics 
that the automated detector considered as separate calls. This tended to overestimate the number 
of bowhead calls in the recordings. To avoid this, all bowhead detections overlapping in time 
were merged together to form a single detection. Also, only detections occurring below 300 Hz 
were considered. No post-processing was performed on beluga detections. 

A.2.2. Walrus Grunt Detection and Classification 
The algorithm first calculated the spectrogram and normalized it for each frequency band. The 
spectrogram was analyzed in consecutive 0.7 s frames overlapped by 50%. For each frame, a set 
of features representing salient characteristics of the spectrogram were extracted in the frequency 
band 50–800 Hz. Extracted features were presented to a two-class random forest classifier to 
determine the class of the sound in the analyzed frame (i.e., ‘walrus grunt’ or ‘other’). During the 
training phase, features of known sounds (i.e., manual annotations) were extracted to create the 
random forest model. The detection process is illustrated in Figure 153. 
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Figure 153. Steps of the walrus grunt detector. 

Step 1: Spectrogram Processing 

The spectrogram resolution was chosen to ensure accurate time-frequency representation of the 
walrus grunts (Table 33). The spectrogram was normalized by the averaged spectrum calculated 
over every 80 s of the recording. 

Table 33. Spectrogram parameters used in the walrus grunt detector. 

Spectrogram parameters Walrus Grunts 

Analysis frame size (samples) 1024 

Overlap between frames (samples) 896 

FFT size (sample) 2048 

Window function Blackman 

 

Step 2: Feature Extraction 

The spectrogram was analyzed in consecutive 0.7 s frames overlapped by 50%. Each 0.7 s frame 
was represented by 20 features. Several features were calculated following Fristrup and Watkins 
(1993) and Mellinger and Bradbury (2007). Features were calculated using the spectrogram 
(Figure 154a), frequency envelope (Figure 154b), and amplitude envelope (Figure 154c) of the 
signal. The frequency envelope is the sum of the spectrogram amplitude for each frequency. The 
maximum of the frequency envelope was normalized to 1. The amplitude envelope is the sum of 
the spectrogram amplitude values for each time step. The measured features are as follows:  

 Median frequency, fmed (F1): Based on the frequency envelope. The cumulative sum of the 
spectrum was calculated by moving from low to high frequencies. The median frequency is 
the frequency at which the cumulative energy reaches 50% of the total energy (green dashed 
line in Figure 154b). 

 Spectral inter-quartile range (F2): Calculated by defining the 25th percentile of the energy on 
each side of the median frequency (dashed blue lines in Figure 154b). Each quartile was 
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defined as frequency for which the cumulative energy calculated from the median frequency 
equals 25% of the total energy. The spectral inter-quartile range is the difference between the 
higher quartile (fQ3) and the lower quartile (fQ1). 

 Spectral asymmetry (F3): Skewness of the spectral envelope calculated as  
(fQ1 + fQ3 – 2fmed)/(fQ1 + fQ3). 

 Spectral concentration (F4): Calculated by ranking amplitude values of the spectral envelope 
from largest to smallest. The cumulative sum of ranked amplitude values was computed 
beginning with larger values until 50% of the total energy was reached. The lowest frequency 
index included in the additive set was considered the minimum and the highest index was 
considered the maximum. Their difference provides the spectral concentration (red box in 
Figure 154b). 

 Maximum frequency peak (F5): Frequency of the highest amplitude peak in the spectral 
envelope (red dot in Figure 154b). 

 Maximum frequency peak width (F6): Width (Hz) of the maximum frequency peak measured 
at the point where amplitude values on each side of the peak reached the 75th percentile of all 
the spectral envelope amplitude values (red vertical line in Figure 154b). 

 Second frequency peak (F7): Frequency of the second highest peak in the spectral envelope. 

 Comparison of the maximum and second frequency peaks (F8, F9): Amplitude ratio and 
frequency difference between the maximum and second frequency peaks.  

 Variance and kurtosis of frequency envelope (F10, F11): These describe the distribution of 
the amplitude in the spectral envelope (Balanda and MacGillivray 1988). 

 Frequency modulation index (F12): Calculated as follows: First, the maximum frequency of 
the maximum amplitude peak was extracted for each time slice of the spectrogram. 
Frequency values of the selected peaks were stored in the vector Fmax and their associated 
energy values in the vector Emax. Only peaks whose amplitude value exceeded the median 
amplitude of the spectrogram were considered (white dots in Figure 154a). Second, the 
weighted maximum frequency offset vector O was defined as  
O = (Fmax – Xmed)·Emax/max(Emax), where Xmed is a scalar representing the median frequency of 
the vector Fmax. The frequency modulation index was defined as the standard deviation of the 
vector O. 

 Asymmetry of the maximum frequencies (F13): The skewness of the vector O defined above. 

 Duration (F14): Number of spectrogram frames with a maximum amplitude value above the 
90th percentile of the amplitude values of the spectrogram. The resultant number of frames 
was then multiplied by the spectrogram time resolution to give the duration in seconds. 

 Amplitude modulation index (F15): The 90th percentile of the first derivative of the amplitude 
envelope. An example of the derivative of the amplitude envelope is shown in Figure 154d. 

 Signal-to-noise ratio (F16): Ratio of the 100th percentile and 25th percentile of the amplitude 
values of the spectrogram. 
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 Overall spectral entropy (F17): The Shannon entropy (Erbe and King 2008) calculated for 
each time slice of the spectrogram in the frequency band 50–600 Hz (Figure 154e). The 
overall spectral entropy is the 10th percentile of these values.  

 Kurtosis of the spectral entropy (F18): Kurtosis of the Shannon entropy values calculated on 
each time slice of the spectrogram. 

 Minimum of the spectral entropy (F19): Minimum of the Shannon entropy values calculated 
on each time slice of the spectrogram. 

 Overall harmonicity (F20): Harmonicity was calculated for each time slice of the 
spectrogram by calculating the Shannon entropy of the Harmonic Product Spectrum (e.g., 
Figure 154f; see Ding et al. 2006). Low harmonicity means the frequency content of the 
analyzed signal is harmonic. The overall harmonicity is the 10th percentile of all the 
harmonicity values.  
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Figure 154. Extraction of features used in the walrus grunt classifier: (a) spectrogram of the analyzed 
frame; (b) Frequency envelope (black line), with the median frequency (green line), the upper and lower 
quartiles (blue lines), the maximum frequency peak (red dot), and the spectral concentration (red box); 
(c) Amplitude envelope; (d) first derivative of the amplitude envelope; (e) spectral entropy; (f) harmonicity 
index. 

Step 3: Classification 

Classification was performed using a random forest classifier (Breiman 2001). The random 
forest classifier was trained using all manual annotations in recordings from the summer 2009 
AMP. The random forest was defined with two classes, ‘walrus grunt’ and ‘other’. Training of 
the classifier, optimization of the number of decision trees in the forest and the selection of the 
most relevant features based on the Gini index were performed using the same process as 
described for bowhead and beluga call detection (Section A.2.1). The optimal number of 
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decision trees was 600. The importance of the features is illustrated in Figure 155. Because 
feature importance did not decrease abruptly, all 20 features were used for classification. 

 
Figure 155. Gini feature importance indices averaged over 100 random forest runs. 

Step 4: Post-Processing 

Seismic airgun pulses can be distorted by propagation effects and appear similar to walrus 
grunts. To minimize false alarms due to seismic pulses, walrus grunt detections concurrent with 
airgun shots detected by the seismic detector (see Section 2.2.2.2) were removed. 

A.2.3. Bearded Seal Call Detection 
The automated detection and classification of bearded seal calls is performed in four steps: 1) the 
calculation and binarization of the spectrogram, 2) the definition of time-frequency objects, 3) 
the feature extraction, and 4) the classification. 

Step 1: Spectrogram Processing  

The first step of the detection process was the calculation of the spectrogram. The spectrogram 
parameters used are in the Table 34. To attenuate long spectral rays in the spectrogram due to 
vessel noise and to enhance weaker transient biological sounds, the spectrogram was normalized 
in each frequency band (i.e., each row of the spectrogram) with a median normalizer (see Section 
6.1). The size of the window used by the normalizer is indicated in Table 34. The normalized 
spectrogram was binarized by setting all the time-frequency bins exceeding a normalized 
amplitude of 4 (no unit) to 1 and the other bins to 0. 
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Table 34. Spectrogram parameters 

 Bearded seal calls 

Analysis frame size (samples) 4096 
Overlap between frames (samples) 3072 
FFT size (sample) 4096 
Window function Reisz 
Normalizer window size (s) 120 
Binarization threshold (no unit) 4 

 

Step 2: Definition of Time-Frequency Objects 

The second step of the detection process consisted in defining time-frequency objects (or events) 
by associating together contiguous bins in the binary spectrogram. The algorithm implemented is 
a variation of the flood-fill algorithm (Nosal 2008). Every spectrogram bins that equals 1 and 
separated by less than 3 bins in both time and frequency are connected together. Figure 156 
illustrates the search area used to connect a spectrogram bin to another one. The bin connection 
process moves from oldest data to newest and from lowest frequency to highest. Also, a 
spectrogram bin can only belong to a single time-frequency object. Each group of connected bins 
is referred to as a time-frequency object.  
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Figure 156. Illustration of the search area used to connect spectrogram bins together. The white bin 
represents a bin of the binary spectrogram equaling 1 and the green bins represent the potential bins that 
it could be connected to. The algorithm advances from left to right, therefore gray cells left of the test cell 
need not be checked. However, checking the far left cells may join broken contours.  

The definition of time-frequency objects is sensitive to noise generated by small pleasure craft or 
fishing vessels near a recorder, which can generate many time-frequency objects that may be 
mistaken for marine life calls. Therefore, a vessel detector is incorporated into the time-
frequency event definition process to reduce false detections. Vessel noise is considered detected 
when at least five frequencies have detected contours for 5 s. Files with at least two vessel 
detections are omitted from further processing. 
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Step 3: Feature extraction 

The third step consists of representing each of the time-frequency objects extracted in the 
previous step by a set of features. Features were defined as the start time (date), the duration (s), 
the minimum and maximum frequency (Hz), and the bandwidth (Hz) of the time-frequency 
objects.  
 

Step 4: Classification 

The final step consists of classifying the time-frequency objects by comparing their features 
against a dictionary defining the features of the vocalizations present in the Chukchi sea based on 
the literature and analysts observations. In the present study, only bearded seal calls were 
represented in the dictionary (Table 35). Notice that the classification process has the ability to 
handle vocalizations that are made of several time-frequency objects such as vocalizations with 
harmonics (referred to as MultiFrequencyComponents) and vocalizations made of a succession 
of time-frequency objects such as seal trills and groups of beluga, dolphin, or beaked whale 
whistles (referred to as MultiTimeComponents). Vocalizations in the dictionary are defined by 
the following features: 

1. Minimum frequency 

2. Maximum frequency—either the maximum frequency expected for the call type, or the 
maximum frequency in the data, whichever is lower. 

3. Minimum duration—at least one spectrogram time slice. 

4. Maximum duration. 

5. Minimum bandwidth. 

6. Maximum bandwidth—not often used. 

7. MultiFrequencyComponent (Boolean): for call types where contours should be grouped 
in frequency with some time overlap before applying the frequency, duration, and 
bandwidth constraints. Each contour that is added to the multi-component contour has the 
following constraints applied: 

a. minComponentDuration—minimum duration for a contour to be added to the multi-
component contour. 

b. minComponentBW—minimum bandwidth for a contour to be added to the multi-
component contour. 

c. Minimum and maximum frequencies as per the global definition. 

8. MultiTimeComponent (Boolean): for call types where contours should be grouped in 
time before applying the frequency, duration, and bandwidth constraints. Each contour 
that is added to the multi-time-component contour has the following constraints applied: 

a. minTimeComponentDuration—minimum duration for a contour to be added to the 
multi-time-component contour. 

b. minTimeComponentBW—minimum bandwidth for a contour to be added to the multi-
time-component contour. 

c. Minimum and maximum frequencies as per the global definition. 
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Table 35. Dictionary defining the time-frequency features of bearded seal calls in the Chukchi sea in the 
summer and in the winter 

Species Call Type 
Min / Max 
frequency (Hz)

Min / Max 
duration (s)

Min / Max 
bandwidth (Hz)

Min / Max 
sweep rate 

Multi-Frequency-
component settings

Multi-time-
component 
settings 

Bearded 
seal – 
winter 
calls 

Full Trill 250 / 5000 5 / 60 500 / - -100 / -10 

Min BW = 30 
Max BW = 200 
Min Dur = 0.5 
Max Dur =5 
MaxFreqShift = 100

0 

Trill end 250 / 1200 10 / 60 100 / - -50 / -5 

Min BW = 20 
Max BW = 100 
Min Dur = 0.5 
Max Dur = 8 
MaxFreqShift = 100

0 

Bearded 
seal – 
summer 
calls 

Downsweep 200 / 1500 0.6 / 10 38 / - -200 / -20 N/A 0 

Upsweep 200 / 1500 0.6 / 4.5 100 / - 50 / 250 N/A 0 

 

Figure 157 shows a block diagram of the several stages of the classification algorithm.  
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Figure 157. Block diagram of the classification algorithm. 
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The algorithm consists of two loops. The outer loop iterates through all the time-frequency 
objects. For each time-frequency object that has not yet been classified, the object’s features are 
compared to each call in the dictionary. If the call is a multi-frequency-component or multi-time-
component type, the list of time-frequency objects is searched for unsorted objects that meet the 
multi-components settings (see Table 35). The total time-frequency object duration, minimum 
and maximum frequencies, and frequency bandwidth are compared to the calls definitions in the 
dictionary. If the object features fall within the call type’s bounds, then the bandwidth (BWi) and 
duration (Ti) indices are computed: 

dictionary

object
i BW

BW
BW           

dictionary

object
i T

T
T   

If either of these indices exceed an empirically chosen threshold of 1.5 times the current best 
index, then the current best-match call type is updated. The 1.5 threshold for updating the best-
match call type means that the algorithm prefers call types that are defined earlier. Therefore if 
for a particular recording, killer whales are more likely to occur than singing humpbacks, the 
killer whale call definitions should occur first in the mammalContours.xml definition file. Error! 
Reference source not found. is an example of all three types of contours applied to dolphin 
calls.  

 

The classification algorithm also implements a time-based filter. Since the classification 
algorithm is intended to count calls of species that are expected in an area, it is reasonable to 
limit the algorithm with a priori knowledge. For instance, we will not detect any bowhead calls 
before 1 Sep or after 1 Jan in the Chukchi sea. The detection of extra-limital species and unusual 
detections as a function of time is left to the manual analysis. 

Figure 158 shows an example of detection and classification of bearded seal calls. 
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Figure 158. Pressure in digital units (top) and spectrogram (bottom) of bearded seal trills (500-200 Hz; 
downsweeps in center) detected using the multi-time component contour type. Beluga and bowhead calls 
are visible in this figure as well. (16 kHz sample rate, 4096-pt STFT, 1024-pt advance).   

A.2.4. Performance Evaluation 

Test Datasets  

The automated detectors/classifiers must be verified with a test dataset that represents the spatio-
temporal variations of the marine mammal calls and background noise in the entire dataset. Since 
the acoustic environment in the eastern Chukchi Sea differs between winter and summer, a 
unique test dataset was used to test the detection/classification algorithms for each season. For 
the winter 2009–2010 AMP data, marine mammal calls were fully manually annotated in the 
first 2 min of each day for recordings from Stations B05, CL50, PL50, W35, and WN40. This 
yielded a test dataset of 1376 2 min fully-annotated samples. For the summer 2010 AMP data, 
marine mammal calls were fully manually annotated in the first 1.5 min after midnight and the 
first 1.5 min after noon of each day for Stations B05, B30 (until 23 Oct 2010), W05 (until 25 
Aug 2010), W35, WN20A (until 6 Oct 2010), CL20, CLN90, KL01, PL20, PL50, and SO01. 
This yielded a test dataset of 1779 1.5 min fully-annotated samples.  

 

Performance Metrics  

The decisions made by detectors/classifiers can be represented as a confusion matrix. The 
confusion matrix consists of four categories: true positives (TP), false positives (FP), true 
negatives (TN) and false negatives (FN). Table 36 depicts the confusion matrix, where E is the 
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signal event we want to detect/classify and E  is a non-event that we want to ignore (i.e., noise). 
The definition of E  varies depending on the detector or classifier.  

Table 36. Confusion matrix. 

  

True 
result 

  E E  

Detection/ 
classification  

result 

E TP FP 

E  FN TN 

 

A true positive (TP) corresponds to a signal of interest being correctly classified as such. A false 
negative (FN) is a signal of interest being classified as noise (i.e., missed). A false positive (FP) 
is a noise classified as a signal of interest (i.e., a false alarm). A true negative (TN) is a noise 
correctly classified as such. 

The numbers of TPs, FPs, and FNs were calculated for each detector and test dataset by 
comparing the manual annotations of marine mammal calls (considered true results, i.e., ground 
truth) with the automated detections/classifications. Numbers of FPs, TPs and FNs were 
calculated on all dataset samples containing annotations of the target call type. If a manually-
annotated call was automatically detected/classified, then the detection was considered a TP, if 
undetected, it was a FN. Each automated detection occurring in the sample that did not 
correspond to a manually-annotated call was considered a FP. 

Precision and Recall  

To assess the performance of the detectors/classifiers, precision (P) and recall (R) metrics were 
calculated based on the numbers (N) of TPs, FPs, and FNs:  

 

FPTP

TP

NN

N
P


  

FNTP

TP

NN

N
R


  (1)

P can be seen as a measure of exactness, and R is a measure of completeness. For instance, a P 
for beluga of 0.9 means that 90% of the detections classified as beluga were in fact beluga calls, 
but says nothing about whether all beluga vocalizations in the dataset were identified. An R for 
beluga of 0.8 means that 80% of all beluga calls in the dataset were classified, but says nothing 
about how many beluga classifications were wrong. Thus, a perfect detector/classifier would 
have P = R = 1. Neither P nor R alone can describe the performance of a detector/classifier on a 
given dataset; both metrics are required. 

The P-R metric presents advantages over the True-Positive Rate (TPR) and False-Positive Rate 
(FPR) generally used in Receiver Operating Characteristic (ROC) curves. Firstly, the P-R metric 
is more adapted to skewed datasets. Secondly, it has been demonstrated that an algorithm 
dominates in ROC space if and only if it dominates in P-R space (Davis and Goadrich 2006). 
Finally, a significant advantage of P-R values over ROC values comes in defining NTN in 
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continuous data. A subjective criterion is necessary to define the length of time that counts as 
one TN value over a continuous recording that contains no targeted vocalizations, whereas NTN 
need not be calculated for the P-R metric. Therefore, using P-R values is better suited to the 
analysis of these time-continuous data. 

Signal-to-Noise Ratio 

The signal-to-noise ratio (SNR) is the ratio of signal power (Ps) to noise power corrupting the 
signal (Pn). It compares the level of the desired signal to the level of the background noise. The 
greater this ratio, the less obtrusive the background noise. SNR is defined in decibels as: 

 SNR 








n

s

P

P
10log10=  (2)

The signal power of a call in a spectrogram is the average power of the call within the frequency 
range of the vocalization, and the noise power is the average power before and after the call 
within the same frequency band (Mellinger 2004; Mellinger and Clark 2006). The duration of the 
noise signal measured before and after the call equals the duration of the call (Figure 159). This 
calculation was performed on the original spectrogram without noise reduction. To quantify 
detector performance for various SNRs, NFN and NTP were calculated for SNR intervals of 
< 0 dB, 0–5 dB, 5–10 dB, and > 10 dB. Values of P are influenced by the background noise and 
not by the SNR of the calls. Therefore P values per SNR intervals were not calculated since these 
values are less relevant.  

 
Figure 159. Calculation of the signal-to-noise ratio (SNR). The power of the call (Ps) is calculated in the 
red box and the power of the noise (Pn) is calculated in the black boxes on either side of the call. 

A.2.5. Call Count Estimation  
Because the detectors/classifiers are imperfect (having false alarms and missed calls), the 
number of automated detections is not exactly equal to the actual number of calls present in the 
recordings. A better estimate can be achieved using P and R. These values characterize the 
relationship between the detector/classifier and the dataset. Therefore, these values are specific 
to, and depend on, both the detector/classifier and the dataset. Provided that the subset of data 
used to characterize P and R are representative of the entire dataset, P and R can be used to 
extrapolate the total number of vocalizations from the number of detected vocalizations. The 
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total number of detections (Ndet) found by the detector/classifier is the sum of the number of true 
and false positives:  

 FPTP NNN det  (3)

and from the definition of P (Equation 1), NTP can be defined as: 

 det)( NPNNPN FPTPTP  (4)

The total number of vocalizations in the data (Nvoc) is the sum of those correctly identified (TP) 
and those that were missed (FN): 

 FNTPvoc NNN   (5)

Therefore R (Equation 1) becomes: 

 
voc

TP

FNTP

TP

N

N

NN

N
R 


  (6)

Combining Equations 4 and 6 yields the total number of vocalizations in terms of P, R, and the 
number of detections: 

 
R

NP

R

N
N TP

voc
det


 

(7)

All call-count estimation plots in the main report (bubble-plots) were produced using Equation 7. 
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A.3. Detector/Classifier Performance Results 

The performance of each automated detector/classifier is provided for test datasets of both the 
winter 2009–2010 and summer 2010 AMPs. The test datasets consist of all fully manually-
annotated data samples for each AMP. For each detector/classifier and AMP season dataset, the 
precision (P) and recall (R) of the detector/classifier on the entire test dataset are given. The SNR 
distribution of the test dataset over four SNR intervals and the R value calculated for each SNR 
interval are shown in Figure panels (a) and (b), respectively. 

A.3.1. Bowhead Winter Songs 
The bowhead winter song detector/classifier was tested against the fully manually-annotated 
recordings of the winter 2009–2010 AMP. The test dataset had a total of 1006 manually-
annotated bowhead songs. The performance of the bowhead song detector/classifier on the test 
dataset yielded P = 0.5 and R = 0.44. As expected, the detector/classifier was able detect more 
calls at higher SNRs. The highest R value was 0.7, obtained for calls with SNR > 10 dB.  

 
Figure 160. Performance of the bowhead winter song detector/classifier on the winter 2009–2010 test 
dataset: (a) signal-to-noise ratio (SNR) distribution of calls in the test dataset; (b) Recall of the 
detector/classifier per call SNR interval. 

A.3.2. Bowhead Summer Moans 
The bowhead summer moan detector/classifier was tested against fully-annotated recordings 
collected during the summer 2010 AMP. The test dataset had a total of 406 manually-annotated 
bowhead moans. The performance of the bowhead moan detector/classifier on the test dataset 
yielded P = 0.84 and R = 0.22. As expected, R increased with increasing SNR. 

a) b) 
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Figure 161. Performance of the bowhead summer moan detector/classifier on the summer 2010 test 
dataset: (a) signal-to-noise ratio (SNR) distribution of calls in the test dataset; (b) Recall of the 
detector/classifier per call SNR interval. 

A.3.3. Beluga Whistles 
The beluga whistle detector/classifier was used for analysis of only the winter 2009–2010 AMP 
data because no beluga whistles occurred in the summer 2010 AMP data. The test dataset had a 
total of 2191 manually-annotated beluga whistles. Most annotated whistles had a SNR between 0 
and 5 dB. The beluga whistle detector/classifier had P = 0.66 and R = 0.26. R for calls with a 
SNR < 0 dB is higher than that for calls with a SNR of 0–5 dB due to bias in the estimation of 
SNR for concurrent beluga whistles. The highest R was 0.75, obtained for whistles with SNR > 
10 dB. 

 
Figure 162. Performance of the beluga whistle detector/classifier on the winter 2009–2010 test dataset. 
(a) signal-to-noise ratio (SNR) distribution of calls in the test dataset. (b) Recall of the detector/classifier 
per call SNR interval. 

A.3.4. Walrus Grunts 
Walrus grunts were recorded only in summer, which included the last few days of the winter 
2009–2010 AMP (i.e., late June) and the entire summer 2010 AMP. Consequently, the 
performance of the walrus grunt detector/classifier was calculated using the summer 2010 and 
winter 2009–2010 test datasets combined (i.e., one set of P and R values for both datasets). The 
combined test dataset had a total of 2228 manually-annotated walrus grunts. Most annotated calls 
had low SNR (1500 annotations with SNR = 0–5 dB). The detector/classifier had P = 0.52 and R 
= 0.26. R increased gradually with increasing SNR.  

a) b) 

a) b) 
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Figure 163. Performance of the walrus grunt detector/classifier on the winter 2009–2010 and summer 
2010 test datasets. (a) signal-to-noise ratio (SNR) distribution of calls in the combined test datasets. (b) 
Recall of the detector per call SNR interval. 

A.3.5. Bearded Seal Calls 
Bearded seal calls were detected and classified in both winter 2009–2010 and summer 2010, 
with a greater vocal presence in the winter. The performance of the bearded seal call 
detector/classifier was evaluated separately for each AMP season. 

Winter 2009–2010 AMP 

The winter 2009–2010 AMP test dataset had a total of 6344 manually-annotated bearded seal 
calls. P and R were calculated on many more calls for the winter test dataset than for the summer 
(6344 vs. 86, respectively) due to high vocal presence of bearded seals in winter. The bearded 
seal call detector/classifier had P = 0.68 and R = 0.5 for the winter 2009–2010 AMP test dataset.  

 
Figure 164. Performance of the bearded seal detector/classifier on the winter 2009–2010 test dataset. (a) 
signal-to-noise ratio (SNR) distribution of calls in the test dataset. (b) Recall of the detector/classifier per 
call SNR interval. 

Summer 2010 AMP 

The summer 2010 AMP test dataset had a total of 86 manually-annotated bearded seal calls. The 
detector/classifier has P = 0.65 and R = 0.17. R for calls with SNR greater than 10 dB is null 
because few manually-annotated bearded seal calls had SNR greater than 10 dB. 

a) b) 

a) b) 
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Figure 165. Performance of the bearded seal detector/classifier on the summer 2010 test dataset. 
(a) signal-to-noise (SNR) distribution of calls in the test dataset. (b) Recall of the detector/classifier per 
call SNR interval. 

A.3.6. Summary 

Table 37. Precision (P) and recall (R, for all SNRs) of each detector/classifier. 

Detector R P 

Bowhead winter songs 0.44 0.5 

Bowhead summer moans 0.22 0.84 

Beluga whistles 0.26 0.66 

Walrus grunts 0.26 0.52 

Bearded seal, summer 0.17 0.65 

Bearded seal, winter 0.5 0.68 

 

a) b) 
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A.4. Discussion 

Performance calculations are essential in developing automated acoustic detectors and 
classifiers. It quantifies how well the detector/classifiers work and allows estimation of the total 
number of calls present in recordings (both detected and undetected). Detector/classifier 
performance can also be evaluated by comparing the number of automated detections per day 
with the daily acoustic presence/absence of the target species (based on manual annotations) over 
a long period of time. Although this approach is less quantitative than the precision (P) and recall 
(R) metrics, it can provide context for the calculated performance metrics.  

A.4.1. Bowhead Winter Songs and Summer Moans 
Figure 166 shows the manual and automated detection/classifications of bowhead moans for the 
summer 2010 Station S01. Although the bowhead winter song and summer moan 
detectors/classifiers both had R < 0.5, they allowed the acoustic presence-absence of bowheads 
to be captured for most days during which they were detected manually. Figure 166 shows few 
false alarms occured. Most false alarms in the summer 2010 AMP data were caused by noise 
from the mooring. Figure 167 shows an example of mooring line noise detected and classified as 
bowhead moans. Such mooring noise was less common in the 2009 data than in the 2008 data. 
Therefore, because the bowhead summer moan random forest was trained with the 2009 data, 
mooring noise was under-represented during creation of the classification model. Further work 
will include accounting for mooring noise during training of the classification algorithm to 
reduce the number of false alarms. 

 
Figure 166. Detection/classification of bowhead summer moans at Station S01, 30 Jul to 13 Oct 2010: 
(top) Average broadband sound pressure level (SPL) of ambient noise, presence of seismic survey 
activity (from the automated seismic detector), and presence of vessels with time, and (bottom) number of 
automated detection/classifications compared to presence/absence of manual detections of bowhead 
summer moans.  

Mooring noise 
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Figure 167. Spectrogram of mooring line noise falsely detected and classified as bowhead moans. 

A.4.2. Beluga Whistles 
Figure 168 compares the manual and automated detections/classifications of beluga whistles for 
winter 2009–2010 Station B05. No seismic activity was detected during this period. Most false 
beluga detections were due to ice noise. Even though ice noise was considered during training of 
the classification algorithm, some ice recordings that were very similar in duration and frequency 
to beluga calls (Figure 169) were falsely detected.  

A possible solution to avoid false alarms by the beluga detector is to add an ‘ice’ class to the 
random forest classifier. This would better represent ice sounds in the classification model and 
avoid them being swamped by calls of other species in the ‘other’ class. Alternatively, the 
random forest model could be created such that the proportions of contours for each class in the 
‘other’ category are equal, rather than representing that found in the performance test dataset (see 
6.2.A.2.1). Both possibilities will be investigated in future. 

 
Figure 168. Detection/classification of beluga whistles at winter 2009–2010 AMP Station B05, 12 Nov 
2009 to 9 Jun 2010: (top) Average broadband SPL of ambient noise, and the presence of vessels with 
time (no seismic activity occurred); and (bottom) number of automated detections/classifications 
compared to presence-absence of manual detections of beluga whistles. 

Ice noise 
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Figure 169. Spectrogram of ice squeaking noise falsely detected and classified as beluga calls. 

A.4.3. Walrus Grunts 
Figure 170 compares the manual and automated detections/classifications of walrus grunts for 
summer 2010 AMP Station W35. Most walrus false alarms were caused by seismic pulses. To 
minimize these false alarms, detection/classifications concurrent with automated seismic 
detections were removed in post-processing. 

 
Figure 170. Detection/classification of walrus grunts at summer 2010 AMP Station W35, 30 Jul 2010 to 
11 Oct 2010: (top) Average broadband sound pressure level (SPL) of ambient noise, presence of seismic 
survey activity (from the automated seismic detector), and presence of vessels with time, and (bottom) 
number of automated detection/classifications compared to presence/absence of manual detections of 
walrus grunts. 

Seismic 
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A.4.4. Summary 
The detector/classifier performances depend greatly on the choice of parameters, such as 
spectrogram resolution (i.e., FFT size, overlap, etc.). Most parameters were chosen empirically 
by testing a set of parameters on a small trial dataset of the previous year’s AMP detections and 
choosing the set of parameters that provided the best detection results. The large number of 
detection parameters precludes testing all possible combinations of said parameters. Therefore, 
future work should include optimization of algorithms to determine the best set of parameters. 
The detector/classifier performances also depend on the choice of features used to characterize 
the calls. The bowhead and beluga classifiers used very different features than the walrus 
classifier, and these are just two examples of feature sets that could be chosen. Many additional 
or alternate features are possible, which will be investigated in future. 
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Appendix B. Ambient Noise Results 

B.1 Introduction 

Bowhead whale (Balaena mysticetus) sounds recorded on the Burger and Klondike cluster 
recorder arrays were located using a location process developed by JASCO Applied Sciences.  
This appendix discusses JASCO’s approach to performing the localization process. 

A localization engine, that models the problem with synthetic data, was implemented to evaluate 
the performance of the localization algorithm.  The localization engine consists of two parts: a 
data simulator and a localization processor (Figure B-171). 

 
FIGURE B-171.  (Left) Data simulator and (right) localization processor of the localization engine. 

B.2 Source Localization 

The localization processor constitutes the second block in the localization engine.  The data 
simulator (first block) will be described in detail in the following section.  The localization 
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processor was designed and developed in MATLAB version 7.11.0.584 (R2010b).  The 
methodology consists of five main stages:   

(1) Time-Alignment  

(2) Data extraction 

(3) Calls Associated with Multiple Recorders  

(4) Time Difference Of Arrival (TDOA) synchronization  

(5) Source localization.   

 

A general overview of the localization processor is given in Figure B-172.   

 
FIGURE B-172.  Block diagram of the localization processor. 

B.2.1 Time-alignment 
Since the recorders have a drift in sampling time over the months of deployment it is essential to 

align the time on each recorder to perform localization. The time drift of each recorder, relative to an 
arbitrary reference recorder Rref is therefore: 

 

Time	Drift ൌ
R୰ୣ୤	ୗୟ୫୮୪ୣୱ	

Eff	ୗୟ୫୮୪୧୬୥	୰ୟ୲ୣ
	– R୰ୣ୤	୘୧୫ୣ ൅ ∆ୗ୷୬ୡ 

where:  
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∆ୗ୷୬ୡ  is the delta sync time over the period of the deployment on each recorder, 
R୰ୣ୤	୘୧୫ୣ  is the calculated time of reference recorder, 
R୰ୣ୤	ୗୟ୫୮୪ୣୱ  is the number of time on the reference recorder, and 

Eff	ୗୟ୫୮୪୧୬୥	୰ୟ୲ୣ is the effective sampling rate calculated on each recorder. 

B.2.2 Data Extraction  
The automatic localization technique applied on this project constitutes a dependent algorithm of 
the automatic detector output.  Bowhead calls identified by the automatic detector are saved into 
MATLAB .MAT files.  A MATLAB function loads all the files and extracts the necessary 
information into a new.MAT file:  recorder number, start and stop time of the file when the event 
was detected, delay-time, minimal and maximum frequency, file-number, and date and time of 
the event.  Figure B-173 shows a block diagram summary of the data extraction.   

 
FIGURE B-173.  Block diagram of the data extraction from the automatic detector. 

B.2.3 Calls Associated with Multiple Recorders  
To avoid misleading information, JASCO has developed an association method that eliminates 
redundant information from the rest of the receivers and secondly, discriminates false TDOAs 
that would generate false source locations.  In addition, this procedure lessens the algorithm 
computing time.  The aim is to find call detections of the same vocalization event as recorded by 
various receivers with different delay times.  All call detection events are sorted and classified by 
frequency band, date and an elapsed delay time. A call associated with multiple recorders is a 
candidate for potential localization if the call was detected by at least three recorders.  Figure B-
174 shows a flow diagram of the event association.   
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FIGURE B-174.  Block diagram of the automatic calls associated with multiple recorders. 

B.2.4 TDOA Synchronization 
The association stage identifies events across multiple recorders that are in the same frequency 
bands, and occur at approximately the same time.  The synchronization stage determines the 
exact time delay of arrival between a reference recorder, and each of the other recorders that 
detected the event.  The TDOAs are computed via cross-correlation of the other recorder’s data 
with the reference recorder.  It then adds the time drift factor according to the date of the call 
detection and synchronizes the times of the different recorders to obtain accurate sets of TDOAs.  
Figure B-175 illustrates the synchronization in a block diagram.   

 
FIGURE B-175.  Flow diagram of the TDOA synchronization stage. 

B.2.5 Source Localization 
Figure B-176 shows a block diagram of the event localization process, which computes the 
source location for each set of event TDOAs.  The accuracy obtained in whale localization 
depends on the ambient noise, the acoustic characteristics of the calls, the instrumentation, and 
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the localization technique.  Of those, we have control of the last two.  JASCO’s event 
localization approach produces a candidate source location based on hyperbolic fixing of a set of 
TDOAs from three separate recorders.  The location is validated by a linear equation algorithm, 
and we check that both results are similar.  The following sections explain both techniques in 
detail. 

 
FIGURE B-176.  Flow diagram of the event localization. 

B.2.5.1 Hyperbolic Fixing Technique 

Hyperbolic fixing continues to be the most widely used technique for localization research 
(Watkins and Schevill 1972, Spiesberger and Fristrup 1990) because of its simplicity and strong 
dependence on three main variables:  TDOA, receiver position and sound velocity of the 
medium.  TDOAs are easily obtained by cross-correlation methods.  Sound velocity is measured 
in situ with Conductivity, Temperature and Depth (CTD) sensors.  Hyperbolic fixing can be 
adapted to various scenarios.  By using detection-classification methods and adequate receiver 
array geometries, TDOA measurements may cover cetacean vocalizations of a wide frequency 
range from 10 Hz to 200 kHz, including calls that vary from clicks to groans, buzzes, chirps and 
whistles.  Hyperbolic fixing provides accurate two-dimensional localization for shallow 
underwater scenarios (Vallarta 2009).   

In the source localization problem, the active source represents a point along the hyperbola 
solution.  Each hyperbola focus point represents a passive receiver element.  The difference in 
arrival times of a source signal between a pair of receivers is the TDOA.  When multiplying the 
TDOA by the sound velocity of the medium, the constant value that defines a hyperbola is 
obtained.  By using several receiver pairs, the intersecting hyperbolas will give an indication of 
source location.   

The accuracy of hyperbolic fixing depends greatly on the number of receiver pairs and their 
relative locations.  The absolute position of each receiver and TDOA must be accurately known 
for this localization to be effective.  The intersection of several hyperbolas provides sufficient 
information of the source location including range and bearing (azimuth) (Vallarta 2009).   
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B.2.5.2 Linear Equation Approach 

The linear equation approach describes the algebraic relation between the TDOA and the 
locations of the source and the receivers.  It yields the same mathematical form for 2D and 3D 
recorder arrays.  Defining Receiver 1 as the origin, the source location (s) is obtained from a 
three-receiver array as: 

 1
1

21

2

1   RcbRs   (C.1)

where c is sound velocity, δ is the TDOA vector  T1312,  , b is given by      
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Solving for τ1: 
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where  

    bRbRa
T 11

1
     bRRa

T 11
2

       11
3

 RRa
T

 (C.4)

Substituting Equation B.3 into Equation B.1, the source location s is obtained.  Two positive solutions 
correspond to two possible source positions.  Negative and complex solutions are discarded as they have no 
physical solution or meaning (Wahlberg et al. 2001, Vallarta 2009).   

B.2.5.3 Source Locations 

The intersections of the hyperbolas may delineate a region of uncertainty rather than an 
intersection point, due to the ambiguity of source positions within the discrete pair of intersection 
points of two hyperbolas.  Hence, those source locations are considered approximate locations 
with higher uncertainty.  JASCO has employed the eccentricity as a measure of localization 
uncertainty:  

 ݁ሺTDOAሻ ൌ
2݀

ܿ TDOA
 (C.5)

where e is eccentricity of the localization hyperbola, d is the separation distance of the receivers, c is the sound 
velocity of the medium, and TDOA is the time difference of arrival of the signal.  Eccentricity is a measure of 
the curvature (or wideness) of the hyperbola.  An eccentricity greater than one ensures hyperbolic intersection, 
an eccentricity equal to one generates ambiguous end-fire locations, and an eccentricity smaller than one 
produces elliptical areas that do not generally intersect.  Hyperbolas with eccentricity tending to infinity are 
also discarded if they do not intersect with another curve.  Therefore, the hyperbolic eccentricity is used as a 
function of the TDOA to minimize the ambiguity of source localizations.  We required that the eccentricity be 
greater than one.   
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B.3 Data Simulation 

The data simulator was designed in MATLAB version 7.11.0.584 (R2010b).   The simulator is 
synthetic with respect to generating whale calls within a random interval; however, receiver 
locations and all other aspects of the simulator are based on real data.  The simulator provides 
controlled test data for validating the localization algorithm and implementation.  Its main 
advantages are complete control in the development of the localization processor algorithm, a 
systematic approach to understanding the role of internal processes in the localization algorithm 
chain, and a modular/segmented tool allowing efficient tracking of the localization processor 
including identifying errors in parameter estimates relevant to localization. 

Inputs to the data simulator are: 

 GPS locations of recorder deployments   
 Whale call rate, whale call duration, whale speed and track time 
 Choice of tracking option: linear, directional, or omni-directional movement 

Outputs of the data simulator are: 

 A synthetic whale path (track-line)  
 Position of synthetic calls along the path 
 Set of TDOAs of the synthetic whale calls at receivers 

B.3.1 Bowhead Call Synthesis 
The data simulator synthesizes a bowhead whale call from a chirp signal—a group of samples of 
a linear swept-frequency cosine signal.   Figure B-177 shows a sample synthetic bowhead call 
between 150 and 350 Hz of 2 s duration (Ljungblad et al. 1982), with white Gaussian noise 
added. 
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FIGURE B-177.  (Left) Spectrogram and (right) power spectrum of a synthetic 
bowhead call generated from a chirp signal of 2 s duration and 200 Hz 
bandwidth. 

B.3.2 Track Line Synthesis 
The data simulator generates a synthetic track line with a random number of calls.  Three 
tracking patterns (linear, directional, and omni-directional movement) are generated based on the 
types of movement observed via satellite monitoring of radio-tagged bowhead whales in the 
Beaufort and Chukchi Seas in 1992 (Mate et al. 2000).  An average speed of 4 knots was 
assumed.   

A linear track consists of an artificial bowhead whale following a simple linear path, for 
example, movement with no perceptible randomness in direction (Figure B-178, top).  A 
directional track consists of a bowhead whale following a random path but in a specific 
direction, for example, a random migratory motion along a directional path (Figure B-178, 
middle).  An omni-directional track consists of a bowhead whale following a non-migratory 
random path, typically localized within a given area.  For example, feeding or resting/socializing 
activities (Figure B-178, bottom).  Tracks incorporating mixed directional and omni-directional 
movements can also be generated, consisting of a combination of random movements in small 
areas interspersed with directional tracks. 
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FIGURE B-178.  (Left) Synthetic tracks of a bowhead whale within the Burger array and (right) the 
associated calls generated by the data simulator for a (top) linear track, (middle) directional track, and 
(bottom) omni-directional track. 

B.3.3 Sound File and TDOA Synthesis 

The data simulator creates WAV files and detector logs that are structurally identical to the real 
acoustic recordings.  Time of arrivals (TOAs) for each call log is measured and recorded in a 
single file for each receiver.  Next, a set of TDOAs for all the call logs is grouped in one master 
file.  Figure B-179 shows three synthetic WAV files, the top panel represents the source in real 
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time, and the middle and bottom panels represent receivers at different positions.  The difference 
of the TOAs to the start of the call gives the appropriate TDOA.   

FIGURE B-179.  Synthetic bowhead whale calls (top) at the source and (middle and bottom) as recorded 
by receivers r1 and r2.  The TOA and TDOA for each set of receivers are recorded in one master TDOA 
file. 

B.3.4 Localization of Synthesized Calls 
To evaluate and validate the accuracy of the localization processor, a series of synthetic calls 
(chirp signals) was generated with the data simulator, as described previously.  WAV and MAT 
files containing the detection call data were produced and used as input to the localization 
engine.  Figure B-180 shows an individual source localized on a Cartesian plane within the 
Burger recorder array using hyperbolic fixing.  A sequence of source localizations for a synthetic 
bowhead track line is shown in Figure B-181. 

TOA1 

source 

r1 TDOA12 

r2 TOA2 



JASCO Applied Sciences  Chukchi Sea 2010 Joint Acoustic Monitoring Program 

43 

 

 
FIGURE B-180.  Localization by hyperbolic fixing of a synthetic 
bowhead call within the Burger recorder array. 

 
FIGURE B-181.  Source localizations by hyperbolic fixing for a 
synthetic bowhead whale track line. 
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Appendix C. Ambient Noise Results 

C.1. Winter 2009–2010 

C.1.1. Power Spectral Density Levels 

 
Figure B-1.  Percentile 1 min power spectral density levels for winter 2009–2010 Stations (top left) B05, 
(top right) CL50, (bottom left) PL50 and (bottom right) PLN40, October 2009 to August 2010. 
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Figure B-2.  Percentile 1 min power spectral density levels for winter 2009–2010 Stations (top 
left) PLN80, (top right) W35, (bottom left) W50 and (bottom right) WN40, October 2009 to August 2010. 
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C.1.2. Sound Pressure Levels 

 
Figure B-3.  Broadband and decade band sound pressure levels (SPL) for winter 2009–2010 Stations 
(top left) B05, (top right) CL50, (bottom left) PL50 and (bottom right) PLN40, October 2009 to August 
2010. 
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Figure B-4.  Broadband and decade band sound pressure levels (SPL) for winter 2009–2010 Stations 
(top left) PLN80, (top right) W35, (bottom left) W50 and (bottom right) WN40, October 2009 to August 
2010. 
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C.1.3. Spectrograms 

 
Figure B-5.  Spectrogram of underwater sound at winter 2009–2010 Stations (top left) B05, (top right) 
CL50, (bottom left) PL50 and (bottom right) PLN40, October 2009 to August 2010. 
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Figure B-6.  Spectrogram of underwater sound at winter 2009–2010 Stations (top left) PLN80, (top right) 
W35, (bottom left) W50 and (bottom right) WN40, October 2009 to August 2010. 
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C.2. Summer 2010 

C.2.1. Power Spectral Density Levels 

 
Figure B-7.  Percentile 1 min power spectral density levels for summer 2010 Stations (top left) B05, (top 
right) B15, (bottom left) B30, and (bottom right) B50, July 2010 to October 2010. 



Chukchi Sea 2010 Joint Acoustic Monitoring Program  JASCO Applied Sciences 

C-8 
 

 
Figure B-8.  Percentile 1 min power spectral density levels for summer 2010 Stations (top left) BG01, (top 
right) BG02, (bottom left) BG03, and (bottom right) BG04, July 2010 to October 2010. 



JASCO Applied Sciences  Chukchi Sea 2010 Joint Acoustic Monitoring Program 

C-9 

 

 
Figure B-9.  Percentile 1 min power spectral density levels for summer 2010 Stations (top left) BG05, (top 
right) BG06, and (bottom) BG07, July 2010 to October 2010. 
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Figure B-10.  Percentile 1 min power spectral density levels for summer 2010 Stations (top left) CL05, 
(top right) CL20, (middle left) CL50, (middle right) CLN40, (bottom left) CLN90, and (bottom right) 
CLN120, July 2010 to October 2010. 
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Figure B-11.  Percentile 1 min power spectral density levels for summer 2010 Stations (top left) KL01, 
(top right) KL02, (middle left) KL03, (middle right) KL04, (bottom left) KL06, and (bottom right) KL07, July 
2010 to October 2010. 
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Figure B-12.  Percentile 1 min power spectral density levels for summer 2010 Stations (top left) PL05, 
(top right) PL20,  (bottom left) PL35, and (bottom right) PL50, July 2010 to October 2010. 
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Figure B-13.  Percentile 1 min power spectral density levels for summer 2010 Stations (top left) PLN40, 
(top right) PLN60, and (bottom) PLN80, July 2010 to October 2010. 
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Figure B-14.  Percentile 1 min power spectral density levels for summer 2010 Stations (top left) S01, (top 
right) S02, (bottom left) S03, and (bottom right) S04, July 2010 to October 2010. 
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Figure B-15.  Percentile 1 min power spectral density levels for summer 2010 Stations (top left) S05, (top 
right) S06, and (bottom) S07, July 2010 to October 2010. 
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Figure B-16.  Percentile 1 min power spectral density levels for summer 2010 Stations (top left) W05, (top 
right) W35, (middle left) WN20A, (middle right) WN20B, and (bottom) WN40, July 2010 to October 2010. 
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C.2.2. Sound Pressure Levels 

 
Figure B-17.  Broadband and decade band sound pressure levels (SPL) for summer 2010 Stations (top 
left) B05, (top right) B15, (bottom left) B30, and (bottom right) B50, July 2010 to October 2010. 
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Figure B-18.  Broadband and decade band sound pressure levels (SPL) for summer 2010 Stations (top 
left) BG01, (top right) BG02, (bottom left) BG03, and (bottom right) BG04, July 2010 to October 2010. 
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Figure B-19.  Broadband and decade band sound pressure levels (SPL) for summer 2010 Stations (top 
left) BG05, (top right) BG06, and (bottom) BG07, July 2010 to October 2010. 
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Figure B-20.  Broadband and decade band sound pressure levels (SPL) for summer 2010 Stations (top 
left) CL05, (top right) CL20, (middle left) CL50, (middle right) CLN40, (bottom left) CLN90, and (bottom 
right) CLN120, July 2010 to October 2010. 
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Figure B-21.  Broadband and decade band sound pressure levels (SPL) for summer 2010 Stations (top 
left) KL01, (top right) KL02, (middle left) KL03, (middle right) KL04, (bottom left) KL06, and (bottom right) 
KL07, July 2010 to October 2010. 
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Figure B-22.  Broadband and decade band sound pressure levels (SPL) for summer 2010 Stations (top 
left) PL05, (top right) PL20, (bottom left) PL35, and (bottom right) PL50, July 2010 to October 2010. 
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Figure B-23.  Broadband and decade band sound pressure levels (SPL) for summer 2010 Stations (top 
left) PLN40, (top right) PLN60, and (bottom) PLN80, July 2010 to October 2010. 
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Figure B-24.  Broadband and decade band sound pressure levels (SPL) for summer 2010 Stations (top 
left) S01, (top right) S02, (bottom left) S03, and (bottom right) S04, July 2010 to October 2010. 
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Figure B-25.  Broadband and decade band sound pressure levels (SPL) for summer 2010 Stations (top 
left) S05, (top right) S06, and (bottom) S07, July 2010 to October 2010. 
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Figure B-26.  Broadband and decade band sound pressure levels (SPL) for summer 2010 Stations (top 
left) W05, (top right) W35, (middle left) WN20A, (middle right) WN20B, and (bottom) WN40, July 2010 to 
October 2010. 
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C.2.3. Spectrograms 

 
Figure B-27.  Spectrogram of underwater sound at summer 2010 Stations (top left) B05, (top right) B15, 
(bottom left) B30, and (bottom right) B50, July 2010 to October 2010. 
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Figure B-28.  Spectrogram of underwater sound at summer 2010 Stations (top left) BG01, (top right) 
BG02, (bottom left) BG03, and (bottom right) BG04, July 2010 to October 2010. 
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Figure B-29.  Spectrogram of underwater sound at summer 2010 Stations (top left) BG05, (top right) 
BG06, and (bottom) BG07, July 2010 to October 2010. 
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Figure B-30.  Spectrogram of underwater sound at summer 2010 Stations (top left) CL05, (top right) 
CL20, (middle left) CL50, (middle right) CLN40, (bottom left) CLN90, and (bottom right) CLN120, July 
2010 to October 2010. 
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Figure B-31.  Spectrogram of underwater sound at summer 2010 Stations (top left) KL01, (top right) 
KL02, (middle left) KL03, (middle right) KL04, (bottom left) KL06, and (bottom right) KL07, July 2010 to 
October 2010. 
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Figure B-32.  Spectrogram of underwater sound at summer 2010 Stations (top left) PL05, (top right) 
PL20, (bottom left) PL35, and (bottom right) PL50, July 2010 to October 2010. 
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Figure B-33.  Spectrogram of underwater sound at summer 2010 Stations (top left) PLN40, (top right) 
PLN60, and (bottom) PLN80, July 2010 to October 2010. 
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Figure B-34.  Spectrogram of underwater sound at (top left) S01, (top right) S02, (bottom left) S03, and 
(bottom right) S04, July 2010 to October 2010. 
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Figure B-35.  Spectrogram of underwater sound at (top left) S05, (top right) S06, and (bottom) S07, July 
2010 to October 2010. 
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Figure B-36.  Spectrogram of underwater sound at (top left) W05, (top right) W35, (middle left) WN20A, 
(middle right) WN20B, and (bottom) WN40, July 2010 to October 2010. 


